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Abstract

By means of a theorical development of lecture [4], we prove that dy-
namic processes associated to natural numbers characterize at least
one arithmetic statement with temporal singularity.

1 Hiperbolic classification of Natural Numbers

For a natural number n > 1 the fact of being a prime is equivalent to stat-
ing that the hyperbola xy = n does not contain non-trivial natural number
coordinate points that is, the only natural number coordinate points in the
hyperbola are (1, n) and (n, 1). We establish a family of bijective functions
between non-negative real numbers and a half-open interval of real num-
bers. Bijectivity allows us to transport usual real number operations, sum
and product, to the interval. It also allows us to deform the xy = k hyper-
bolas with k as a real positive number in such a way that we can distinguish
whether a natural number n is a prime or not by its behaviour in terms of
gradients of the deformed hyperbolas near the deformed of xy = n (Hyper-
bolic Classification of Natural Numbers).

In this section we define a function ψ which ranges from non-negative real
numbers to a half-open interval, strictly increasing, continuous in R+ and
class 1 in each interval [m,m + 1] (m ∈ N = {0, 1, 2, 3, ...}) . The bijectiv-
ity of ψ allows to transport the usual sum and product of R+ to the set

∗Up until the 2008/09 academic year. I am now devoted to investigation.
†Idem.

1



R̂+ := ψ(R+) in the usual manner. That is, calling x̂ = ψ(x), we define
ŝ⊕ t̂ = ψ(s+ t), ŝ⊗ t̂ = ψ(st). Therefore, (R̂+,⊕,⊗) is an algebraic struc-
ture isomorphic to the usual one (R+,+, ·) and as a result, we obtain an
algebraic structure (N̂ := ψ(N),⊕,⊗) isomorphic to the usual one (N,+, ·).
The function ψ also preserves the usual orderings. Thus we transport the
notation from R+ to R̂+, that is n̂ is natural iff n is natural, p̂ is prime
iff p is prime, x̂ is rational iff x is rational, etc. Assume that, for example
0̂ = 0, 1̂ = 0′72, 2̂ = 1′3, 3̂ = 3′0001, 4̂ = π, 5̂ = 6′3, 7̂ = 7′21, ..., 1̂2 =
9′03, ... then, the following situation would arise: the “even number” 9′03
is the “sum” of the “prime numbers” 6′3 and 7′21 and the number π is the
“product” of the numbers 0′72 and π.

Obviously, until now, we have only actually changed the symbolism by means
of the function ψ. If we call x̂ŷ plane the set (ψ(R+))

2
, the hyperbolas

xy = k (k > 0) of the xy plane with x > 0 and y > 0 are transformed by
means of the function ψ×ψ at the x̂⊗ ŷ = k̂ “hyperbolas” of the x̂ŷ plane.
We will restrict our attention to the points in the x̂ŷ plane that satisfy x̂ > 0̂
and ŷ ≥ x̂. Then, with these restrictions for the ψ function, it is possible
to choose right-hand and left-hand derivatives of ψ at m ∈ N∗ = {1, 2, 3, ...}
such that we can characterize the natural number coordinate points in the
x̂ŷ plane in terms of differentiability of the functions which determine the
transformed hyperbolas. As a result, we can distinguish prime numbers from
composite numbers in the aforementioned terms.

1.1 R+ coding function

Definition 1.1.1. Let ψ : R+ → R be a map and let ψm be the restriction
of ψ to each closed interval [m.m + 1] (m ∈ N) . We say that ψ is an R+

coding function iff: (i) ψ(0) = 0. (ii) ψ ∈ C(R+). (iii) ∀m ∈ N, ψm ∈
C1([m,m+ 1]) with positive derivative in [m,m+ 1].

Remarks (1) Easily proved, if ψ is an R+ coding function then it is strictly
increasing and consequently, injective. (2) If Mψ := sup {f(x) : x ∈ R+}
then, Mψ ∈ (0,+∞] (being Mψ = +∞ iff ψ is not bounded), and so
ψ (R+) = [0,Mψ). Therefore ψ : R+ → ψ (R+) = [0,Mψ) is bijective,
and here onwards we will refer to the ψ function as a bijective function. (3)
We will frequently use the notation x̂ = ψ(x). Due to the ψ bijection, we
transport the sum and the product from R+ to [0,Mψ) in the usual manner
([3]), that is we define in [0,Mψ) the operations ψ-sum as x̂⊕ ŷ = ψ(x+ y)
and ψ-product as x̂ ⊗ ŷ = ψ(x · y). Thus, ψ : (R+,+, ·) → ([0,Mψ) ,⊕,⊗)
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is an isomorphism. (4) The ψ function preserves the usual orderings, that
is, ŝ ≤ t̂ ⇔ s ≤ t, ŝ = t̂ ⇔ s = t. (5) For x̂ ∈ [0,Mψ) we say that x̂ is a
ψ-natural number iff x is a natural number, x̂ is ψ-prime iff x is prime, x̂ is
ψ-rational iff x rational, etc. (6) When we work on the set [0,Mψ)2, we say
that we are on the x̂ŷ plane. (7) For x ≥ y we denote x̂ ∼ ŷ := ψ(x− y) =
(ψ-subtraction) and for y 6= 0, x̂÷ ŷ = ψ(x/y) (ψ-quotient).

Mψ

x
1 2 3 4

1̂

2̂

3̂

4̂

x̂ = ψ(x)

Figure 1: R+ coding function

1.2 ψ-natural number coordinate points in the x̂ŷ plane

Let ψ be an R+ coding function and α ∈ N∗. We want to characterize
the (u, v) ψ-natural numbers coordinate points of the x̂ŷ plane whose co-
ordinates ψ-sum is α̂ (u ⊕ v = α̂). For this, we begin with the function
fα : [0, α]→ [0, α] , fα (x) = α− x. Let us apply the function ψ × ψ to the
graph

Γ (fα) =
{

(x, y) ∈ (R+)2 : x ∈ [0, α] ∧ y = fα(x)
}

We then obtain the transformed curve: (ψ × ψ) (Γ(fα)). The f̂α : [0, α̂] →
[0, α̂] function which determines the graph of the transformed curve is

f̂α(u) = ψ(α− ψ−1(u))

Of course, (u, v) ∈ Γ(f̂α) = (ψ × ψ) (Γ(fα)) has ψ-natural number coor-
dinates iff u is a ψ-natural number. The following theorem will allow a
characterization of the ψ-natural coordinate points whose ψ-sum is α̂.

Proposition 1.2.1. Let α ∈ N∗, ψ : R+ → [0,Mψ) an R+ coding function

and f̂α : [0, α̂]→ [0, α̂] , f̂α(u) = ψ(α− ψ−1(u)). Then,
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a) f̂α is continuous and strictly decreasing.
b) Let m ∈ N :

[
m̂, m̂⊕ 1̂

]
⊂ [0, α̂]. Then f̂α is differentiable at every u

belonging to the interval
(
m̂, m̂⊕ 1̂

)
, with derivative

f̂ ′α(u) = −
(ψα−m−1)′

(
α− ψ−1(u)

)
(ψm)′ (ψ−1(u))

c) ∀m ∈ { 0, 1, 2, ..., α− 1 }, we verify

(f̂α) ′+(m̂) = −
(ψα−m−1)′− (α−m)

(ψm)′+ (m)

d) ∀m ∈ { 1, 2, 3, ..., α }, we verify

(f̂α) ′−(m̂) = −
(ψα−m)′+ (α−m)

(ψm−1)′− (m)

Proof. a) We have [0, α̂]
ψ−1

−−→ [0, α]
fα−→ [0, α]

ψ−→ [0, α̂]. Therefore, f̂α = ψ ◦
fα◦ψ−1 is a composition of continuous functions, as a result it is continuous.
In addition:

0 ≤ s < t ≤ α̂⇒ ψ−1 (s) < ψ−1 (t)

⇒ α− ψ−1 (s) > α− ψ−1 (t)

⇒ ψ
(
α− ψ−1 (s)

)
> ψ

(
α− ψ−1 (t)

)
⇒ f̂α (s) > f̂α (t)

⇒ f̂α is strictly decreasing

b) We have(
m̂, m̂⊕ 1̂

) ψ−1

→ (m,m+ 1)
fα→ (α−m− 1, α−m)

ψ→
(
α̂ ∼ m̂ ∼ 1̂, α̂ ∼ m̂

)
In other words, f̂α maps f̂α :

(
m̂, m̂⊕ 1̂

)
→
(
α̂ ∼ m̂ ∼ 1̂, α̂ ∼ m̂

)
. For the f̂α

function, all the hypotheses of the Chain Rule and Inverse Function Theorem
are fulfilled, [6] thus ∀u ∈

(
m̂, m̂⊕ 1̂

)
:

f̂ ′α(u) = ψ ′(α− ψ−1(u)) · −1

ψ ′(ψ−1(u))

= (ψα−m−1)′(α− ψ−1(u)) · −1

(ψm)′(ψ−1(u))
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c) Let ε > 0 : m̂ < m̂⊕ε < m̂⊕ 1̂. As ψ is continuous and strictly increasing,
there exists 0 < δ < 1 such that ψ−1 (m̂⊕ ε) = m+ δ. Then,

[m̂, m̂⊕ ε)
ψ−1

→ [m,m+ δ)
fα→ (α−m− δ, α−m]

ψ→
(
α̂ ∼ m̂ ∼ δ̂, α̂ ∼ m̂

]
Therefore f̂α maps f̂α : [m̂, m̂⊕ ε) →

(
α̂ ∼ m̂ ∼ δ̂, α̂ ∼ m̂

]
. Consequently

∀u ∈ [m̂, m̂⊕ ε) , f̂α(u) = ψ
(
α− ψ−1 (u)

)
= ψα−m−1

(
α− ψ−1 (u)

)
and:

(f̂α)′+ (m̂) = (ψα−m−1)′− (α−m) · −1

ψ′ (ψ−1 (m̂))

= −
(ψα−m−1)′− (α−m)

(ψm)′+ (m)

d) We can similarly reason. Let ε > 0 : m̂ ∼ 1̂ < m̂ ∼ ε (or ε < 1̂). Then,

(m̂ ∼ ε, m̂]
ψ−1

→ (m− δ,m]
fα→ [α−m,α−m+ δ)

ψ→
[
α̂ ∼ m̂, α̂ ∼ m̂⊕ δ̂

)
Note that 0 < δ < 1. Thus f̂α : (m̂ ∼ ε, m̂] →

[
α̂ ∼ m̂, α̂ ∼ m̂⊕ δ̂

)
. As a

result, f̂α (u) = ψ
(
α− ψ−1 (u)

)
= ψα−m

(
α− ψ−1 (u)

)
. We obtain:

(f̂α)′− (m̂) = (ψα−m)′+ (α−m) · −1

ψ′ (ψ−1 (m̂))

= −
(ψα−m)′+ (α−m)

(ψm−1)′− (m)

Let us now call ak = (ψk−1)′− (k) , bk = (ψk)
′
+ (k) (k = 1, 2, 3, ...). From the

previous theorem

(f̂α)′+(m̂) = −aα−m
bm

, (f̂α)′− (m̂) = −bα−m
am

Therefore, f̂α is differentiable for every m̂
(
m̂ = 1̂, 2̂, ..., α̂ ∼ 1̂

)
iff

am aα−m = bm bα−m (∀m ∈ { 1, 2, ..., α− 1 })

The f̂α function is not differentiable for every m̂
(
m̂ = 1̂, 2̂, . . . , α̂ ∼ 1̂

)
iff

am aα−m 6= bm bα−m (∀m ∈ { 1, 2, ..., α− 1 })
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If f̂α is not differentiable for every m̂
(
m̂ = 1̂, 2̂, ..., α̂ ∼ 1̂

)
, this circumstance

allows us to immediately visualise the Γ(f̂α) points with ψ-natural number
coordinates, and from this we may see something deeper (Fig. 2).

y

x

ψ × ψ
α

α x̂

ŷ

Γ(fα) α̂

α̂

Γ(f̂α)

Figure 2: Identifying points with ψ-natural number coordinate points

Definition 1.2.1. Let α ∈ N∗ where α ≥ 2, and ψ : R+ → [0,Mψ) an
R+ coding function. It is said that the ψ function identifies ψ-natural
numbers in

[
0̂, α̂

]
iff ∀u ∈

(
0̂, α̂

)
it is verified: u is a ψ-natural number

⇔ f̂α is not differentiable at u.

Corollary 1.2.1. α ∈ N∗, (α ≥ 2) and ψ : R+ → [0,Mψ) an R+ coding
function. Then, ψ identifies ψ-natural numbers in [0, α̂] ⇔ am aα−m 6=
bm bα−m (∀m ∈ { 1, 2, ..., α− 1 }).

1.3 ψ-hyperbolas in the x̂ŷ plane

The aim here is to study the transformed curves of the y = k/x hyperbolas
(k ∈ R+ − {0}) by means of an R+ coding function in terms of differentia-
bility. Consider the function

hk : (0,+∞)→ (0,+∞) , hk (x) =
k

x

y

x

ψ × ψ

x̂

ŷ

Γ(hk) Γ(ĥk)

Figure 3: ψ-hyperbolas in the x̂ŷ plane
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Definition 1.3.1. We call ψ-hyperbola any transformed curve graph of
Γ (hk) by means of ψ × ψ.

Notice that the function which defines the ψ-hyperbola is:

ĥk : (0,Mψ)→ (0,Mψ) , ĥk (u) = ψ

(
k

ψ−1 (u)

)
Proposition 1.3.1. Let ψ : R+ → [0,Mψ) be an R+ coding function. Then,

ĥk : (0,Mψ)→ (0,Mψ) is continuous and strictly decreasing.

Proof. (0,Mψ)
ψ−1

→ (0,+∞)
hk→ (0,+∞)

ψ→ (0,Mψ), thus ĥk = ψ ◦ hk ◦ ψ−1 is
a composition of continuous functions, and is consequently continuous. In
addition

0 < s < t < Mψ ⇒ ψ−1 (s) < ψ−1 (t)

⇒ k

ψ−1 (s)
>

k

ψ−1 (t)

⇒ ψ

(
k

ψ−1 (s)

)
> ψ

(
k

ψ−1 (t)

)
⇒ ĥk (s) > ĥk (t)

⇒ ĥk is strictly decreasing

We will now analyse the differentiability of ĥk distinguishing, for this, the
cases in which the dependent and/or independent variable takes ψ-natural
number values or not.

Proposition 1.3.2. Where x, y ∈ R+ − N, bxc = n, byc = m.

1.- If (x̂, ŷ) ∈ Γ(ĥk), then

(ĥk)
′(x̂) =

−k
x2
· (ψm)′(y)

(ψn)′(y)

2.- If (x̂, m̂) ∈ Γ(ĥk), then

(ĥk)
′
+ (x̂) =

−k
x2
· am

(ψn)′ (x)
, (ĥk)

′
− (x̂) =

−k
x2
· bm

(ψn)′ (x)
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3.- If (n̂, ŷ) ∈ Γ(ĥk), then

(ĥk)
′
+ (n̂) =

−k
n2
· (ψm)′ (y)

bn
, (ĥk)

′
− (n̂) =

−k
n2
· (ψm)′ (y)

an

4.- If (n̂, m̂) ∈ Γ(ĥk), then

(ĥk)
′
+ (n̂) =

−k
n2
· am
bn
, (ĥk)

′
− (n̂) =

−k
n2
· bm
an

Proof. Case 1 u ∈ (n̂, n̂⊕ 1̂) (n ∈ N) that is, u is not a ψ-natural number.

We obtain (n̂, n̂⊕ 1̂)
ψ−1

→ (n, n + 1)
hk→(k/(n + 1), k/n)

ψ→(k̂ ÷ (n̂ ⊕ 1̂), k̂ ÷ n̂)
so, ĥk maps ĥk : (n̂, n̂⊕ 1̂)→ (k̂ ÷ (n̂⊕ 1̂), k̂ ÷ n̂).

1.a) Suppose ĥk(u) is not a ψ-natural number (Fig. 4). Since k/ψ−1 (u) is
not a natural number, in a neighbourhood of u , the expression of the ĥk
function is:

ĥk(t) = ψ⌊ k
ψ−1(u)

⌋( k

ψ−1(t)

)
y

x

ψ × ψ

x̂

ŷ

k/ψ−1(u)

Γ(k̂k)

ψ−1(u)

n n+ 1

bk/ψ−1(u)c ĥk(u)

un̂ n̂⊕ 1̂

Γ(ĥk)

Figure 4: Finding (ĥk)
′(u)

(ĥk)
′ (u) =

(
ψ⌊ k

ψ−1(u)

⌋)′( k

ψ−1 (u)

)
· −k

(ψ−1 (u))2 ·
1

(ψn)′ (ψ−1 (u))

Consequently ĥk is differentiable at u.

1.b) Suppose ĥk(u) is a ψ-natural number (Fig. 5). This is equivalent to
say that k/ψ−1 (u) is a natural number. For a sufficiently small ε > 0 we
obtain

8



(u ∼ ε, u]
ψ−1

→
(
ψ−1 (u ∼ ε) , ψ−1 (u)

] hk→[
k

ψ−1(u)
,

k

ψ−1(u ∼ ε)

)
ψ→
[
k̂ ÷ ψ̂−1(u), k̂ ÷ ̂ψ−1(u ∼ ε)

)
y

x

ψ × ψ

x̂

ŷ

k/ψ−1(u)

Γ(k̂k)

ψ−1(u)n n+ 1

ψ−1(u ∼ ε)

ĥk(u)

un̂ n̂⊕ 1̂

Γ(ĥk)

u ∼ ε

Figure 5: Finding (ĥk)
′
−(u)

We can choose ε > 0 such that n < ψ−1(u ∼ ε) < ψ−1(u) < n+ 1 and as a
consequence for every t ∈ (u ∼ ε, u] we verify k/ψ−1(u) ≤ k/ψ−1(t). That is,
we can choose ε > 0 such that ∀t ∈ (u ∼ ε, u], ĥk (t) = ψ k

ψ−1(u)

(
k/ψ−1(t)

)
.

Thus:

(ĥk)
′
− (u) =

(
ψ k
ψ−1(u)

)′
+

(
k

ψ−1 (u)

)
· −k

(ψ−1 (u))2 ·
1

(ψn)′ (ψ−1 (u))

Let us now examine the value of (ĥk)
′
+(u). For a sufficiently small ε > 0 we

obtain (Fig. 6)

[u, u⊕ ε)
ψ−1

→
[
ψ−1 (u) , ψ−1 (u⊕ ε)

) hk→(
k

ψ−1 (u⊕ ε)
,

k

ψ−1 (u)

]
ψ→
(
k̂ ÷ ̂ψ−1(u⊕ ε), k̂ ÷ ψ̂−1(u)

]
We can choose ε > 0 such that n < ψ−1(u) < ψ−1(u ⊕ ε) < n + 1 and as a
consequence for every t ∈ [u, u⊕ ε) we verify k/ψ−1(t) ≤ k/ψ−1(u). That
is, we can choose ε > 0 such that ∀t ∈ [u, u⊕ ε)

ĥk(t) = ψ k
ψ−1(u)

−1

(
k

ψ−1(t)

)
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y

x

ψ × ψ

x̂

ŷ

k/ψ−1(u)

Γ(hk)

ψ−1(u)n n+ 1

ψ−1(u⊕ ε)

ĥk(u)

un̂ n̂⊕ 1̂

Γ(ĥk)

u⊕ ε

Figure 6: Finding (ĥk)
′
+(u)

Would result:

(ĥk)
′
+ (u) =

(
ψ k
ψ−1(u)

− 1

)′
−

(
k

ψ−1 (u)

)
· −k

(ψ−1 (u))2 ·
1

(ψn)′ (ψ−1 (u))

Case 2 u = n̂ (n ∈ N∗) that is, u is a ψ-natural number (u > 0). For a
sufficiently small ε > 0 and ψ(n+ δ) = n̂⊕ ε we obtain (Fig. 7)

y

x

ψ × ψ

x̂

ŷ

k/n

Γ(hk)

n n+ 1

n+ δ

ĥk(u)

n̂ n̂⊕ 1̂

Γ(ĥk)

n̂⊕ ε

Figure 7: Finding (ĥk)
′
+(n̂)

[n̂, n̂⊕ ε)
ψ−1

→ [n, n+ δ)
hk→
(

k

n+ δ
,
k

n

]
ψ→
(
k̂ ÷ (n̂⊕ δ̂), k̂ ÷ n̂

]
For every t ∈ [n̂, n̂⊕ ε), we verify ĥk(t) = ψb knc

(
k/ψ−1 (t)

)
if k/n /∈ N∗ and

ĥk (t) = ψ k
n
−1

(
k/ψ−1(t)

)
if k/n ∈ N∗. As a consequence
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(ĥk)
′
+ (n̂) =

(
ψb knc

)′(k
n

)
· −k
n2
· 1

(ψn)′+ (n)
(if k/n /∈ N∗)

(ĥk)
′
+ (n̂) =

(
ψ k
n
− 1

)′
−

(
k

n

)
· −k
n2
· 1

(ψn)′+ (n)
(if k/n ∈ N∗)

Finally we have to study the differentiability of ĥk at u = n̂ from the left
side. For a sufficiently small ε > 0 and ψ(n− δ) = n̂ ∼ ε, we obtain (fig. 8)

(n̂ ∼ ε, n̂]
ψ−1

→ (n− δ, n]
hk→
[
k

n
,

k

n− δ

)
ψ→
[
k̂ ÷ n̂, k̂ ÷ (n̂ ∼ δ̂)

)
y

x

ψ × ψ

x̂

ŷ

k/n

Γ(hk)

nn− 1

n− δ

ĥk(n̂)

n̂

Γ(ĥk)

n̂ ∼ 1̂

n̂ ∼ ε

Figure 8: Finding (ĥk)
′
−(n̂)

We can choose ε > 0 such that ∀t ∈ (n̂ ∼ ε, n̂] we verify

ĥk (t) = ψb knc

(
k

ψ−1(t)

)
regardless of whether k/n is a natural number or not. This therefore would
result

(ĥk)
′
−(n̂) =

(
ψb knc

)′
+

(
k

n

)
· −k
n2
· 1

(ψn−1)′−(n)

We have completed our examination of the differentiability of ĥk when de-
pendent and/or independent variables take natural ψ-natural number values
or not. Since (ψi−1)′− (i) = ai and (ψi)

′
+ (i) = bi (i = 1, 2, 3, . . .), the propo-

sition is proven.
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Corollary 1.3.1. Let ψ be an R+ coding function, assume x, y ∈ R+ − N,
bxc = n, byc = m and ĥk : (0,Mψ) → (0,Mψ) , ĥk (u) = ψ

(
k/ψ−1(u)

)
.

Then:

(i) If (x̂, ŷ) ∈ Γ(ĥk), then ĥk is differentiable at x̂
(ii) If (x̂, m̂) ∈ Γ(ĥk), then ĥk is differentiable at x̂ iff am = bm
(iii) If (n̂, ŷ) ∈ Γ(ĥk), then ĥk is differentiable at n̂ iff an = bn
(iv) If (n̂, m̂) ∈ Γ(ĥk), then ĥk is differentiable at n̂ iff anam = bnbm

Corollary 1.3.2. If we want the ĥk functions to be only differentiable at the
points where both the ordinate and the abscissa are not ψ-natural numbers,
we must select ψ in such a way that (an 6= bn) ∧ (am 6= bm) ∧ (anam 6= bnbm)
or equivalently

anam 6= bnbm (∀n ∈ N∗,∀m ∈ N∗) (1.3.1)

Definition 1.3.2. We say that an R+ coding function identifies primes iff
the ĥk functions are only differentiable at the non-ψ-natural number abscissa
and ordinate points

1.4 Classification of points in the x̂ŷ plane

Let ψ : R+ → [0,Mψ) be an R+ coding function that identifies primes.
The class of sets H = {Γ(hk) : k ∈ R+ − {0}} is a partition of (0,+∞)2 and
being ψ a bijective function, the class Ĥ = {Γ(ĥk) : k ∈ R+ − {0}} of all
ψ-hyperbolas is a partition of (0,Mψ)2. Every subset of R2 will be consid-
ered as a topological subspace of R2 with the usual topology. We have the
following cases:

1.- (x̂, ŷ) ∈ (0,Mψ)2 (x /∈ N∧ y /∈ N). Then, in a neighbourhood V of (x̂, ŷ)
we verify: ∀(ŝ, t̂) ∈ V , the ψ-hyperbola which contains (ŝ, t̂) is differentiable
at ŝ. Of course, we mean to say the function which represents the graph of
the ψ-hyperbola (Fig. 9).

(x̂, ŷ)
V

(ŝ, t̂)

Figure 9: x 6∈ N, y 6∈ N
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2.- (x̂, m̂) ∈ (0,Mψ)2 (x /∈ N ∧ m ∈ N∗). Then, in a neighbourhood V
of (x̂, m̂) we verify: ∀(ŝ, t̂) ∈ V , the ψ-hyperbola which contains (ŝ, t̂) is
differentiable at ŝ iff t̂ 6= m̂ (Fig 10).

(x̂, m̂)
V

Figure 10: x 6∈ N,m ∈ N∗

3.- (n̂, ŷ) ∈ (0,Mψ)2 (n ∈ N∗∧y /∈ N). Then, in a neighbourhood V of (n̂, ŷ)
we verify: ∀(ŝ, t̂) ∈ V , the ψ-hyperbola which contains (ŝ, t̂) is differentiable
at ŝ iff ŝ 6= n̂ (Fig. 11).

(n̂, ŷ)V

Figure 11: n ∈ N∗, y 6∈ N

4.- (n̂, m̂) ∈ (0,Mψ)2 (n ∈ N∗ ∧ m ∈ N). Then, in a neighbourhood V
of (n̂, m̂) we verify: ∀(ŝ, t̂) ∈ V , the ψ-hyperbola which contains (ŝ, t̂) is
differentiable at ŝ iff ŝ 6= n̂ and t̂ 6= m̂ (Fig. 12).

V
(n̂, m̂)

Figure 12: n ∈ N∗,m ∈ N∗
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Given the symmetry of the ψ-hyperbolas with respect to the line x̂ = ŷ, let
us consider the triangular region of the x̂ŷ plane Tψ =

{
(x̂, ŷ) : ŷ ≥ x̂, x̂ > 0̂

}
.

Definition 1.4.1. Let ψ be an R+ coding function that identifies primes
and assume that (x̂, ŷ) ∈ Tψ. If (x̂, ŷ) = (n̂, m̂) with n ∈ N∗, m ∈ N∗ we say
that it is a vortex point with respect to ψ (Fig. 13).

v = m̂

u = n̂

(n̂, m̂)

Figure 13: Vortex points

The existence of vortex points in a ψ-hyperbola allows us to identify ψ-
natural numbers, only one vortex point, ψ-prime numbers. (Hyperbolic
Classification of Natural Numbers)

Corollary 1.4.1. Let k̂ ∈
(
0̂,Mψ

)
. According to the statements made above,

we may classify k̂ in terms of the behaviour of ψ-hyperbolas in Tψ that are

near the ψ-hyperbola x̂⊗ ŷ = k̂. We obtain the following classification:

1) k̂ is a ψ-natural number iff the ψ-hyperbola x̂⊗ ŷ = k̂ in Tψ contains at
least a vortex point.
2) k̂ is a ψ-prime number iff k̂ 6= 1̂ and the ψ-hyperbola x̂ ⊗ ŷ = k̂ in Tψ
contains one and only one vortex point.
3) k̂ is a ψ-composite number iff the ψ-hyperbola x̂ ⊗ ŷ = k̂ in Tψ contains
at least two vortex points.
4) k̂ is not a ψ-natural number iff the ψ-hyperbola x̂⊗ ŷ = k̂ in Tψ does not
contain vortex points.

So, vortex points are characterized in terms of differentiability of the ψ-
hyperbolas in Tψ near these points. For every k > 0, denote k̄ := Γ(ĥk)∩Tψ
and let 0̄ be one element different from k̄ (k > 0). Define R =

{
k̄ : k ≥ 0

}
and consider the operations on R :

(a) k̄ + s̄ = k + s , k̄ · s̄ = k · s (k > 0, s > 0)

14



(b) t̄+ 0̄ = 0̄ + t̄ = t̄ , t̄ · 0̄ = 0̄ · t̄ = 0̄ (t ≥ 0)

Then, (R,+, ·) is an isomorphic structure to the usual one (R+,+, ·) and
prime numbers p ∈ N are characterized by the fact that p̄ 6= 1̄ and p̄
contains one and only one vortex point. Amongst the R+ coding func-
tions that identifies primes, it will be interesting to select those given by
ψm : [m,m+ 1]→ R+ (m = 0, 1, 2, ...) functions that are affine (Fig. 14)

y

x
1 2 3 4

B1

B2

B3

B4

x̂ = ψ(x)

Figure 14: R+ prime coding

ψm(x) = ξm(x−m) +Bm (ξm > 0 ∀m ∈ N, B0 = 0, Bm =
m−1∑
j=0

ξj if m ≥ 1)

(1.4.1)
We can easily prove that the ψ functions defined by means of the sequence
(ψm)m≥0 are R+ coding functions. The conditions (1.3.1) for ψ to identify
primes can now thus be expressed:

ψ identifies primes ⇔ (ξi 6= ξi+1) ∧ (ξiξj 6= ξi+1ξj+1)

Equivalently, ψ identifies primes ⇔ ξiξj 6= ξi+1ξj+1 (∀i∀j ∈ N). The ful-
filment of this inequality is guaranteed by choosing ξi such that 0 < ξi <
ξi+1 (∀i ∈ N) though this is not the only way of choosing it.

Definition 1.4.2. Any R+ coding function ψ that is defined by means of
ψm affine functions that also satisfies 0 < ξi < ξi+1 (∀i ∈ N) it is said to be
an R+ prime coding. We call the numbers ξ0, ξ1, ξ2, ξ3, ... coefficients of
the R+ prime coding.
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2 Essential regions and Goldbach Conjecture

Goldbach’s Conjecture is one of the oldest unsolved problems in number the-
ory and in all of mathematics. It states: “Every even integer greater than 2
can be written as the sum of two primes” (S). Furthermore, in his famous
speech at the mathematical society of Copenhagen in 1921 G.H. Hardy pro-
nounced that S is probably “ as difficult as any of the unsolved problems in
mathematics ” and therefore Goldbach problem is not only one of the most
famous and difficult problems in number theory, but also in the whole of
mathematics ([9]). In this section, and using the Hyperbolic Classification
of Natural Numbers we provide a characterization of S.

In the x̂ŷ plane determined by any R+ prime coding function ψ and for
any given ψ-even number α̂ ≥ 1̂6 we will consider the function in which
any number k̂ of the closed interval [4̂, α̂ ÷ 2̂] corresponds to the area
of the region of x̂ŷ: x̂ ≥ 2̂, ŷ ≥ x̂, x̂ ⊗ ŷ ≤ k̂ (called lower area) and
also the function that associates each to the area of the region of x̂ŷ:
x̂ ≥ 2̂, ŷ ≥ x̂, α̂ ∼ k̂ ≤ x̂ ⊗ ŷ ≤ α̂ ∼ 4̂ (called upper area). The x̂ŷ plane is
considered imbedded in the xy plane with the Lebesgue Measure ([5]). This
means that for any given ψ-even number α̂ ≥ 1̂6 we have α̂ = k̂ ⊕ (α̂ ∼ k̂)
and, associated to this decomposition, two data pieces, lower and upper ar-
eas. We will study if α̂ the ψ-sum of the two ψ-prime numbers k̂0 and α̂ ∼ k̂0

taking into account the restrictions α̂ ∼ 3̂ and α̂÷ 3̂ both ψ-composite. The
upper and lower area functions will not yet yield any characterizations to
the Goldbach Conjecture. We will need the second derivative of the total
area function (the sum of the lower and upper areas).

To this end, we define the concept of essential regions associated to a hy-
perbola which, simply put, is any region in the xy plane with the shape
[n, n+ 1] × [m,m+ 1] where n and m are natural numbers, m > n > 1
and the hyperbola intersects it in more than one point or else the shape
[n, n+ 1]2 where n > 1 and x ≤ y and the hyperbola intersects in more
than one point.

These essential regions are then transported to the x̂ŷ plane by means of
the ψ×ψ function, and we will find the total area function adding the areas
determined by each hyperbola in the respective essential regions, and the
second derivative of this area function in each essential region. After this
process we obtain the formula which determines the second derivative func-
tion of the total area ÂT in each sub-interval [k̂0, k̂0⊕ 1̂], k0 = 4, 5, ..., α/2−1
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a derivative which is continuous

(ÂT )′′(k̂) =
xk0
ξ2
k0

· 1

k
+

yk0
ξ2
α−k0−1

· 1

α− k
(k̂ ∈ [k̂0, k̂0 ⊕ 1̂])

Both xk0 and yk0 are numeric values in homogeneous polynomial of degree
two obtained from substituting in their variables the ξi coefficients of the ψ
R+ prime coding function . We call Pk0 = (xk0 , yk0) an essential point. The
study of the behaviour of the second derivative in these intervals allows the
following characterization of the Goldbach Conjecture for any even number
α ≥ 16 with the restrictions α− 3 and α/2 composite:

Claim 2.0.1. α ≥ 16, an even number, then, α is the sum of two prime
numbers k0 and α − k0 (5 ≤ k0 < α/2) iff the consecutive essential points
Pk0−1 and Pk0 are repeated, that is, if Pk0−1 = Pk0.

2.1 Essential regions associated with a hyperbola

Definition 2.1.1. Consider the family of functions

H = {hk : [ 2,
√
k ]→ R, hk(x) = k/x, k ≥ 4}

whose graphs represent the pieces of the hyperbolas xy = k (k ≥ 4) included
in the subset of R2, S ≡ (x ≥ 2) ∧ (x ≤ y). For n,m natural numbers
consider the subsets of R2:

a) R(n,m) = [n, n+ 1]× [m,m+ 1] (2 ≤ n < m)
b) R(n,n) = ([n, n+ 1]× [n, n+ 1]) ∩

{
(x, y) ∈ R2 : y ≥ x

}
Let hk be an element of H. We say that R(n,m) is a square essential
region of hk iff R(n,m) ∩ Γ (hk) contains more than one point. We say that
R(n,n) is a triangular essential region of hk iff R(n,n) ∩ Γ (hk) contains
more than one point.

For example, the essential regions of the xy = 17 hyperbola are R(2,8), R(2,7),
R(2,6), R(2,5), R(3,5), R(3,4) and R(4,4) (Fig. 15).

Analyse the different types of essential regions depending on the way the
hyperbola xy = k intersects with R(n,m) (m > n). If the hyperbola passes
through point P (n,m+ 1) (Fig.16), then the equation for the hyperbola is
xy = n(m+ 1).
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y

x

9

8

7

6

5

4

2 3 4 5

y = x

Figure 15: Essential regions of xy = 17

The abscissa of the Q point is x = n(m+ 1)/m. We verify that n < n(m+
1)/m < n+1. This is equivalent to say nm < nm+n and nm+n < mn+m
or equivalently (0 < n) ∧ (n < m), which are trivially true. The remaining
types are reasoned in a similar way (Fig. 17).

P

Q

Figure 16: Intersection between hyperbolas and essential regions

Figure 17: Types of square essential regions
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We use the same considerations for the triangular essential regions R(n,n)

(Fig. 18)

Figure 18: Types of triangular essential regions

Let k0 ∈ N, k0 ≥ 4. We will examine which are the types of essential regions
for the hyperbolas xy = k (y ≥ x) where k0 < k < k0 + 1. The passage
through essential regions of points P0, Q0 of the xy = k0 hyperbola with
relation to P,Q points of the xy = k hyperbola corresponds to the following
diagrams (Fig. 19)

P

Q
P0

P0

P

Q0 Q

P0

Q0

P

Q

P0

Q0

Q

P

Figure 19: Square essential regions (k0 < k < k0 + 1)

P0

P

Q
P0

Q0

P

Q

P0

Q0

P

Q

P0

Q0

P

Q0

Figure 20: Triangular essential regions (k0 < k < k0 + 1)

As a consequence, the essential regions for the hyperbola xy = k (k > 4)
are of the following types

a) Square essential regions R(n,m)
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Type 1 Type 2 Type 3 Type 4 Type 5

Figure 21: Square essential regions (k > 4)

b) Triangular essential regions R(n,n)

Type 6 Type 7 Type 8

Figure 22: Triangular essential regions (k > 4)

We will find the essential regions of the xy = k hyperbolas with the condi-
tions k0 ∈ N, k0 ≥ 4, k0 < k < k0 + 1. The abscissa of xy = k0 varies in the
interval [2,

√
k0]

2 3 4 . . . n n+ 1 . . . b
√
k0c

√
k0

b
√
k0c+ 1

Figure 23: Finding all essential regions (1)

a) For n ∈ {2, 3, . . . , b
√
k0c − 1} the R(n,m) essential regions of the xy = k

hyperbolas are obtained when m varies in the set (fig. 24):

{bk0/(n+ 1)c, bk0/(n+ 1)c+ 1, ... , bk0/nc}

We can easily verify that if m = bk0/nc then R(n,m) is a square essential
region of Type 2, if m = bk0/(n+ 1)c, R(n,m) is a square essential region of
Type 5 and the remaining R(n,m) are of Type 3 (Fig. 21).

b) For n = b
√
k0c, the R(b

√
k0,mc) essential regions are obtained when m

varies in the set:

{b
√
k0c, b

√
k0c+ 1, . . . , b k0/b

√
k0c c}
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⌋
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⌊
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y
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k0
b
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⌋
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√
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b
√
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√
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R(⌊
k0
b
√
k0c

⌋
,

⌊
k0
b
√
k0c

⌋)

R(b
√
k0c,b

√
k0c)

Figure 24: Finding all essential regions (2)

If m = b
√
k0c we obtain a triangular essential region and could eventually

exist a square essential region (Fig. 24). Consider the set of indexes {(n, in)}
such that

(1) For n = 2, 3, . . . , b
√
k0c − 1 then

in = bk0/(n+ 1)c, bk0/(n+ 1)c+ 1, . . . , bk0/nc

(2) For n = b
√
k0c then

in = b
√
k0c, b

√
k0c+ 1, . . . , b k0/b

√
k0c c

Let Es(k0) be the set {(n, in)}, where (n, in) are pairs of type (1) or of type
(2). We obtain the following proposition:

Proposition 2.1.1. Let k0 ∈ N∗ (k0 ≥ 4). Then, i) All the xy = k (k0 <
k < k0 + 1) hyperbolas have the same essential regions, each of the same
type. ii) The xy = k essential regions are the elements of the set {R(n,in) :
(n, in) ∈ Es(k0)}

Example For k0 = 18 the essential regions of the xy = k (18 < k < 19)
hyperbolas are (Fig. 25) R(2,9), R(3,6) (type 2), R(2,8), R(2,7), R(3,5) (type
3), R(2,6), R(3,4) (type 5) and R(4,4) (type 7). The essential regions of the
xy = k (19 < k < 20) hyperbolas are exactly the same, due to the fact that
19 is a prime number.
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(19 < k < 20)

Figure 25: Essential regions (18 < k < 19 and 19 < k < 20)

2.2 Areas in essential regions associated with a hyperbola

To every R(n,m) (n ≤ m) essential region of the xy = k (k 6∈ N∗, k > 4)
hyperbola, we will associate the region of the xy plane below the hyperbola
(we call it D(n,m)(k)). Denote A(n,m)(k) the area of D(n,m)(k). We have the
following cases (Fig. 26)

Type 2 Type 3 Type 5

Type 7 Type 8

Figure 26: Areas in essential regions
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(i) Type 2 essential region

A(n,m)(k) =

∫∫
D(n,m)(k)

dxdy with D(n,m)(k) ≡ n ≤ x ≤ k/m ,m ≤ y ≤ k/x

A(n,m)(k) =

∫ k
m

n
dx

∫ k
x

m
dy

=

∫ k
m

n

(
k

x
−m

)
dx

= k log
k

nm
+ nm− k

If k ∈ [k0, k0 + 1] (k0 ≥ 4 natural number), then A′(n,m)(k) = log k/(nm)

and the second derivative is A′′(n,m)(k) = 1/k. Note that we have used the

closed interval [k0, k0 + 1] so we may extend the definition of the essential
region for k ∈ N (k ≥ 4) in a natural manner. In some cases the “essential
region” would consist of a single point (null area).

(ii) Type 3 essential region

In this case D(n,m)(k) = D′∪D′′ where D′ = [n, k/(m+ 1)]× [m,m+ 1] and
D′′ ≡ k/(m+ 1) < x ≤ k/m , m ≤ y ≤ k/x. Besides, D′ ∩D′′ = ∅.

A(n,m)(k) =

∫∫
D(n,m)(k)

dxdy

=
k

m+ 1
− n+

∫∫
D′′

dxdy

=
k

m+ 1
− n+ k log

m+ 1

m
+mk

(
1

m+ 1
− 1

m

)
If k0 ≤ k ≤ k0 + 1 then, A′′(n,m)(k) = 0.

(iii) Type 5 essential region

In this case D(n,m)(k) = D′∪D′′ where D′ = [n, k/(m+ 1)]× [m,m+ 1] and
D′′ ≡ k/(m+ 1) < x ≤ n+ 1, m ≤ y ≤ k/x. Besides, D′ ∩D′′ = ∅.
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A(n,m)(k) =

∫∫
D(n,m)(k)

dxdy

=
k

m+ 1
− n+

∫∫
D′′

dxdy

=
k

m+ 1
− n+ k log

(n+ 1)(m+ 1)

k
−m

(
n+ 1− k

m+ 1

)
In the interval [k0, k0 + 1] we obtain A′(n,m)(k) = log((n+ 1)(m+ 1)/k) and

A′′(n,m)(k) = −1/k.

(iv) Type 7 essential region

D(n,n)(k) ≡ n ≤ x ≤
√
k , x ≤ y ≤ k/x

A(n,n)(k) =

∫ √k
n

dx

∫ k
x

x
dy

=

∫ √k
n

(
k

x
− x
)
dx

=

[
k log x− x2

2

]√k
n

=
k

2
log k − k

2
− k log n+

n2

2

If k0 ≤ k ≤ k0 + 1, A′(n,n) (k) = (1/2) log k − log n and A′′(n,n) (k) = 1/2k.

(v) Type 8 essential region

In this caseD(n,n)(k) = D′∪D′′ whereD′ ≡ n ≤ x ≤ k/(n+1), x ≤ y ≤ n+1

and D′′ ≡ k/(n+ 1) < x ≤
√
k, x ≤ y ≤ k/x. Besides, D′ ∩D′′ = ∅.

A(n,n)(k) =

∫∫
D′
dxdy +

∫∫
D′′

dxdy

=

∫ k
n+1

n
dx

∫ n+1

x
dy +

∫ √k
k
n+1

dx

∫ k
x

x
dy

=

∫ k
n+1

n
(n+ 1− x) dx+

∫ √k
k
n+1

(
k

x
− x
)
dx

=
k

2
− n(n+ 1) +

n2

2
+ k log

n+ 1√
k
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If k0 ≤ k ≤ k0 + 1, A′(n,n)(k) = log((n+ 1)/
√
k) and A′′(n,n)(k) = −1/2k.

2.3 Areas of essential regions in the x̂ŷ plane

Consider in the xy plane, an essential region R(n,m)(n ≤ m) of the xy =
k (k ≥ 4) hyperbola and ψ an R+ prime coding function with ξi coefficients.
Let R̂(n,m) be the corresponding region in the x̂ŷ plane that is, R̂(n,m) =

(ψ × ψ)(R(n,m)). We call Â(n,m) the area of D̂(n,m) = (ψ × ψ)(D(n,m))
supposing the x̂ŷ plane embedded in the xy plane.

D(n,m)

ψ × ψ
D̂(n,m)

Figure 27: Relationship between Â(n,m) and A(n,m)

Proposition 2.3.1. In accordance with the aforementioned conditions

Â(n,m) = ξnξmA(n,m)

Proof. The transformation that maps D(n,m) in D̂(n,m) is x̂ = ψn(x), ŷ =
ψm(y). The Jacobian for this transformation is

J = det


∂x̂

∂x

∂x̂

∂y
∂ŷ

∂x

∂ŷ

∂y

 = det

[
ψ′n(x) 0

0 ψ′m(y)

]
= ψ′n(x)ψ′m(y) 6= 0

Thus, ([1]) Â(n,m) =
∫∫
D̂(n,m)

dx̂dŷ =
∫∫
D(n,m)

|ψ′n(x)ψ′m(y)| dxdy. Since

ψ is an R+ prime coding function, then |J | = ξnξm and as a result the
relationship between the areas of the essential regions in xy and in x̂ŷ is

Â(n,m) =

∫∫
D(n,m)

ξnξm dxdy = ξnξm

∫∫
D(n,m)

dxdy = ξnξmA(n,m)
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Let α be an even number. We will assume for technical reasons that α ≥ 16.
Let k ∈ [4, α/2] and consider the subsets of R2

DI(k) = {(x, y) ∈ R2 : x ≥ 2, y ≥ x, xy ≤ k}
DS(k) = {(x, y) ∈ R2 : x ≥ 2, y ≥ x, α− k ≤ xy ≤ α− 4}

Let ψ be an R+ prime coding function and consider the subsets of [0,Mψ)2

D̂I(k̂) = (ψ × ψ)(DI(k)) , D̂S(k̂) = (ψ × ψ)(DS(k))

y

x2

2

xy = α− 4

xy = α− k
xy = α/2

xy = kDI(k)

DS(k)

Figure 28: DI(k) and DS(k)

We now define the functions

1) ÂI : [4̂, α̂÷ 2̂]→ R+ , k̂ → ÂI(k̂) (area of D̂I(k̂)).
2) ÂS : [4̂, α̂÷ 2̂]→ R+ , k̂ → ÂS(k̂) (area of D̂S(k̂)).
3) ÂT : [4̂, α̂÷ 2̂]→ R+ , ÂT = ÂI + ÂS .

Let α be an even number (α ≥ 16) and ψ an R+ prime coding function
with coefficients ξi. We take k0 = 4, 5, . . . , α/2− 1 and we study the second
derivative of ÂI at each closed interval [k̂0, k̂0 ⊕ 1̂]. For this, we consider
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the corresponding function AI(k). Then ∀k ∈ [k0, k0 + 1] we verify AI(k) =
AI(k0) + AI(k) − AI(k0). Additionally, AI(k) − AI(k0) is the sum of the
areas in the essential regions associated with the xy = k hyperbola, minus
the area in the essential regions associated with the xy = k0 hyperbola so,

AI(k)−AI(k0) =
∑

(n,in)∈ES(k0)

[
A(n,in)(k)−A(n,in)(k0)

]
We know that functions A(n,in)(k) have a second derivative in [k0, k0 + 1],
therefore

A′′I (k) =
∑

(n,in)∈ES(k0)

A′′(n,in)(k) (∀k ∈ [k0, k0 + 1])

We now want to find the expression of (ÂI)
′′ as a function of the variable k̂,

where k̂ ∈ [k̂0, k̂0 ⊕ 1̂]. By proposition 2.3.1, Â(n,m)(k̂) = ξnξmA(n,m)(k). If

we derive with respect to k̂, we obtain

(Â(n,m))
′(k̂) = ξnξmA

′
(n,m)(k)

dk

dk̂

x̂

x
k0 k0 + 1

k̂0

k̂0 ⊕ 1̂
ψk0

Figure 29: Finding (Â(n,m))
′′(k̂) (1)

At k ∈ [k0, k0 + 1], the expression of k̂ is k̂ = ξk0(k−k0) +Bk0 (1.4.1). Then
dk/dk̂ = 1/ξk0 , therefore (Â(n,m))

′(k̂) = (ξnξm/ξk0)A′(n,m)(k). Deriving once
again:

(Â(n,m))
′′(k̂) =

ξnξm
ξ2
k0

A′′(n,m)(k)

We get the following proposition:
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Proposition 2.3.2. Let α be an even number (α ≥ 16). Then for every
k̂0 = 4̂, 5̂, . . . , (α̂÷ 2̂) ∼ 1̂

a) (ÂI)
′′(k̂) =

∑
(n,in)∈ES(k0)

(Â(n,in))
′′(k̂) (∀k̂ ∈ [k̂0, k̂0 ⊕ 1̂])

b) For [k̂0, k̂0⊕ 1̂] and bearing in mind the different types of essential regions,
we obtain

(i) Type 2 essential region: (Â(n,m))
′′(k̂) =

ξnξm
ξ2
k0

· 1

k

(ii) Type 3 essential region: (Â(n,m))
′′(k̂) = 0

(iii) Type 5 essential region: (Â(n,m))
′′(k̂) = −ξnξm

ξ2
k0

· 1

k

(iv) Type 7 essential region: (Â(n,n))
′′(k̂) =

ξ2
n

ξ2
k0

· 1

2k

(v) Type 8 essential region: (Â(n,n))
′′(k̂) = − ξ

2
n

ξ2
k0

· 1

2k

Example We will find (ÂI)
′′(k̂) in [1̂2, 1̂3] with α̂ ≥ 2̂6. (Fig. 31)

ŷ

x̂

7̂

6̂

5̂

4̂

3̂

2̂ 3̂ 4̂

x̂⊕ ŷ = k̂

(1̂2 < k̂ < 1̂3)

Figure 31: Finding (ÂI)
′′(k̂) in [1̂2, 1̂3]

28



(ÂI)
′′(k̂) =

ξ2ξ6

ξ2
12

· 1

k
− ξ2ξ4

ξ2
12

· 1

k
+
ξ3ξ4

ξ2
12

· 1

k
− 1

2
· ξ

2
3

ξ2
12

· 1

k

=
1

kξ2
12

(ξ2ξ6 − ξ2ξ4 + ξ3ξ4 − ξ2
3/2)

Now, consider the polynomial p(t) = t2t6 − t2t4 + t3t4 − t23/2. We call this
polynomial a lower essential polynomial of k0 = 12 and we write it as PI,k0 .

Definition 2.3.1. Let α be an even number (α ≥ 16). The polynomial ob-
tained naturally by removing the common factor function 1/(kξ2

0) in (ÂI)
′′(k̂)

in the interval [k̂0, k̂0 ⊕ 1̂] (k0 = 4, 5, . . . , α/2− 1) is called a lower essential
polynomial of k0. It is written as PI,k0.

Remarks (i) Lower essential polynomials are homogeneous polynomials
of degree 2. (ii) The variables that intervene in PI,k0 are at most tn and
tin where (n, in) ∈ Es(k0), some of which may be missing (those which
correspond to essential regions in which the second derivative is 0). (iii) We
will also use PI,k0 as the coefficient of 1/(kξ2

k0
) in (ÂI)

′′(k̂).

Corollary 2.3.1. Let α be an even number (α ≥ 16). Then, ∀k̂ ∈ [k̂0, k̂0⊕1̂]
with k̂0 ∈ {4̂, 5̂, . . . , α̂÷ 2̂ ∼ 1̂} we verify (ÂI)

′′(k̂) = PI,k0/(kξ
2
k0

).

2.4 (ÂS)
′′ and (ÂT )

′′ functions

Let α be an even number (α ≥ 16). We take k0 ∈ {4, 5, . . . , α/2−1} and we
examine the second derivative of ÂS at each closed interval [k̂0, k̂0⊕1̂]. Then,
∀k ∈ [k0, k0 + 1] we verify AS(k) = AS(k0) +AS(k)−AS(k0). Additionally,
AS(k)−AS(k0) is the area included between the curves

xy = α− k0, xy = α− k, x = 2, y = x

As a result, it is the sum of the areas in the essential regions of the xy = α−k0

hyperbola minus the area in the essential regions of xy = α− k. We obtain:

AS (k)−AS (k0) =
∑

(n,in)∈ES(α−k0−1)

[
A(n,in) (α− k0)−A(n,in) (α− k)

]
A′′S(k) = −

∑
(n.in)∈ES(α−k0−1)

A′′(n,in)(α− k)

Of course, the same relationships as in the lower areas are maintained with
the expression (ÂS)′′ as a function of k̂ . We are left with:
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(Â(n,in))
′′(k̂) = − ξnξin

ξ2
α−k0−1

·A′′(n,in)(α− k)

We define upper essential polynomial in a similar way we defined lower
essential polynomial and we write them as PS,k0 . The same remarks are
maintained.

Remarks (i) Upper essential polynomials are homogeneous polynomials
of degree 2. (ii) The variables that intervene in PS,k0 are at most tn, tin
where (n, in) ∈ ES(α− k0 − 1), some of which may be missing (those which
correspond to essential regions in which the second derivative is 0). (iii) We
will also use PS,k0 as the coefficient of 1/(α− k)ξ2

α−k0−1 in (ÂS)′′(k̂).

2.5 Signs of the essential point coordinates

Definition 2.5.1. Let ψ be an R+ prime coding function and α an even
number (α ≥ 16). For k0 ∈ {4, 5, . . . , α/2 − 1} we write Pk0 = (xk0 , yk0) =
(PI,k0 , PS,k0). We call any Pk0 an essential point associated with ψ.

Hence, we can express

(ÂT )′′(k̂) =
xk0
ξ2
k0

· 1

k
+

yk0
ξ2
α−k0−1

· 1

α− k
(k̂ ∈ [k̂0, k̂0 ⊕ 1̂]) (2.5.1)

The formula from proposition 2.3.2 is

(ÂI)
′′(k̂) =

∑
(n.in)∈ES(k0)

(Â(n,in))
′′(k̂) (∀k̂ ∈ [k̂0, k̂0 ⊕ 1̂])

where the ES (k0) sub-indexes are

(1) For n = 2, 3, . . . , b
√
k0c − 1

in = bk0/(n+ 1)c, bk0/(n+ 1)c+ 1, . . . , bk0/nc (2.5.2)

(2) For n = b
√
k0c

in = b
√
k0c, b

√
k0c+ 1, . . . , b k0/b

√
k0c c (2.5.3)

Thus, for sub-index n in (1), in (ÂI)
′′ only intervene in = bk0/(n+ 1)c and

in = bk0/nc, since we have already seen that all the sub-indexes included
between them two, (Â(n,in))

′′(k̂) = 0, as the essential regions are of type 3.
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In the lower essential polynomial we obtain ξn(ξbk0/nc − ξ[k0/(n+1)]) > 0 (for

any R+ prime coding function). For n = b
√
k0 c we obtain the cases:

(i) b
√
k0c = bk0/b

√
k0cc (ii) b

√
k0c < bk0/b

√
k0cc (2.5.4)

In case (i) we would obtain the addend (1/2)ξ2
b k0 c, in case (ii) we would

obtain (Fig. 32):

ξb
√
k0cξbk0/b

√
k0cc − (1/2)ξ2

b
√
k0c

= ξb
√
k0c(ξbk0/b

√
k0cc − (1/2)ξb

√
k0c) > 0

x̂

ŷ

ψ(b
√
k0c)

ψ(b
√
k0c) x̂

ŷ

ψ(bk0/b
√
k0cc)

ψ(b
√
k0c)

ψ(b
√
k0c)

Figure 32: Finding the sign of xk0

As a result, for an R+ prime coding function we obtain x4 > 0, x5 > 0,
. . . , xα/2−1 > 0. The reasoning is entirely analogous for the upper essential
polynomials that is, y4 < 0, y5 < 0, . . . , yα/2−1 < 0. We will now arrange
the coordinates for the essential points.

1. Lower essential polynomials If k0 ∈ N, (k0 > 4) is composite, there is at

least one ψ- natural number coordinates point (n̂, m̂) such that 2̂ ≤ n̂ ≤ m̂
which the ψ-hyperbola x̂⊗ ŷ = k̂0 goes through. (a) If 2 < n < m we obtain
the changes

(n̂, m̂)

Changes

PI,k0−1 PI,k0

0

−ξn−1ξm−1

ξnξm−1

−ξn−1ξm

ξnξm

0

Figure 33: Arranging xk0 in order (Case a)
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(b) If 2 < n = m

(n̂, n̂)
PI,k0−1 PI,k0

0

−ξ2
n−1/2

−ξn−1ξn

ξ2
n/2

Changes

Figure 34: Arranging xk0 in order (Case b)

(c) If 2 = n < m

(2̂, m̂)
PI,k0−1

Changes

PI,k0

0

ξ2ξm−1

ξ2ξm

0

Figure 35: Arranging xk0 in order (Case c)

Then PI,k0 − PI,k0−1 > 0, since where there are transformations we obtain,
for any prime coding function, either (a) or (b) or (c)

(a) ξnξm − ξn−1ξm + ξn−1ξm−1 − ξnξm−1 =
ξm (ξn − ξn−1)− ξm−1 (ξn − ξn−1) =

(ξn − ξn−1) (ξm − ξm−1) > 0

(b)
ξ2
n

2
− ξn−1ξn +

ξ2
n−1

2
=
ξ2
n − 2ξn−1ξn + ξ2

n−1

2
=

(ξn − ξn−1)2

2
> 0

(c) ξ2ξm − ξ2ξm−1 = ξ2 (ξm − ξm−1) > 0

If k0 is prime then PI,k0−1 = PI,k0 since the same essential regions exist for

the hyperbolas x̂⊗ ŷ = k̂ in (k̂0 ∼ 1̂, k̂0) ∪ (k̂0, k̂0 ⊕ 1̂).
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2. Upper essential polynomials If α− k0 is composite, and reasoning in the
same way, we obtain PS,k0 − PS,k0−1 > 0. For α − k0 prime we obtain
PS,k0 = PS,k0−1 since the same essential regions exist for the hyperbolas

x̂⊗ ŷ = α̂ ∼ k̂ if k̂ ∈ (k̂0 ∼ 1̂, k̂0) ∪ (k̂0, k̂0 ⊕ 1̂). We obtain the theorem:

Theorem 2.5.1. Let α be an even number (α ≥ 16), and ψ an R+ prime
coding function. Let Pk0 = (xk0 , yk0) be the essential points. Then,
(i) 0 < x4 ≤ x5 ≤ . . . ≤ xα/2−1. Additionally, xk0−1 = xk0 ⇔ k0 is prime.
(ii) y4 ≤ y5 ≤ . . . ≤ yα/2−1 < 0. Additionally, yk0−1 = yk0 ⇔ α −
k0 is prime.

The following Corollary proves Claim 2.0.1. i.e.:

Corollary 2.5.1. In the hypotheses from the above theorem: The even num-
ber α is the sum of two primes k0 and α−k0, k0 ∈ {5, 6, . . . , α/2−1} iff the
consecutive essential points Pk0−1 and Pk0 are repeated, that is Pk0−1 = Pk0.

3 Time and Arithmetic

I have sometimes thought that the profound mystery which en-
velops our conceptions relative to prime numbers depends upon
the limitations of our faculties in regard to time which, like space
may be in essence poly-dimensional and that this and other such
sort of truths would become self-evident to a being whose mode
of perception is according to superficially as opposed to our own
limitation to linearly extended time. (J.J. Sylvester [7])

3.1 Construction of the Goldbach Conjecture function

Proposition 3.1.1. Let α be an even number (α ≥ 16), and ψ be an R+

prime coding function with ξi coefficients. Let Pk0 = (xk0 , yk0) be the essen-
tial points (k0 = 4, 5, . . . , α/2− 1). Then,
(i) xk0 depends at most on ξ2, ξ3, . . . , ξbk0/2c
(ii) yk0 depends at most on ξ2, ξ3, . . . , ξb(α−k0−1)/2c

Proof. (i) In ES(k0) = {(n, in)} we verify that n ≤ in. The smallest n is 2
and the biggest in is bk0/2c (ii) In ES(α−k0−1) = {(n, in)} we verify that
n ≤ in. The smallest n is 2 and the biggest in is b(α− k0 − 1)/2c

Remark Since the biggest sub-index coefficient that appears at the essential
point coordinates is ξb(α−4−1)/2c = ξα/2−3 we conclude that knowing the
coefficients ξ2, ξ3, . . . , ξα/2−3 all the essential points are determined. Note
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that where 0 < ξ2 < ξ3 < . . . < ξα/2−3 the 2.5.1 corollary is met. This leads
to the following definition:

Definition 3.1.1. Let α be an even number (α ≥ 16), and ψ an R+ coding
function such that its ξi coefficients verify 0 < ξ2 < ξ3 < . . . < ξα/2−1 and
ξi > 0 in other case. We say that ψ is an R+ coding function adapted
to α. (We have also included ξα/2−2 and ξα/2−1 for technical reasons)

Generally (ÂT )′′(k̂0−) 6= (ÂT )′′(k̂0+) (Fig. 36). The following proposition
provides sufficient conditions for the (ÂT )′′ function to be well defined and
continuous in the [4̂, α̂÷ 2̂] closed interval.

ŷ

x̂k̂0 ∼ 1̂ k̂0 k̂0 ⊕ 1̂

(ÂT )′′(k̂0+) 6= (ÂT )′′(k̂0−)

Figure 36: Graph of (ÂT )′′

Proposition 3.1.2. Let α be an even number (α ≥ 16) and ψ be an R+

coding function adapted to α . Assume that
i) ξ2

k0
xk0−1 = ξ2

k0−1xk0 and ξ2
α−k0−1yk0−1 = ξ2

α−k0yk0 for every k0 composite
(5 ≤ k0 ≤ α/2− 1)
ii) For every p0 prime (5 ≤ p0 ≤ α/2− 1),

ξ2
α−p0 = |yp0−1|

(
|yp0 |

ξ2
α−p0−1

+
α− p0

p0
· xp0−1 ·

(
1

ξ2
p0−1

− 1

ξ2
p0

))−1

Then, (ÂT )′′(k̂0−) = (ÂT )′′(k̂0+) ∀k0 ∈ {5, 6, . . . , α/2− 1}

Proof. From (2.5.1) and for all k0 ∈ {5, 6, . . . , α/2− 1} we have

(ÂT )′′(k̂0−) =
xk0−1

k0ξ2
k0−1

+
yk0−1

(α− k0)ξ2
α−k0

(ÂT )′′(k̂0+) =
xk0
k0ξ2

k0

+
yk0

(α− k0)ξ2
α−k0−1
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Then (ÂT )′′(k̂0−) = (ÂT )′′(k̂0+) if and only if

1

k0

(
xk0−1

ξ2
k0−1

− xk0
ξ2
k0

)
=

1

α− k0

(
|yk0−1|
ξ2
α−k0

− |yk0 |
ξ2
α−k0−1

)
When k0 is composite, i) implies the equality above. Note that if k0 is
composite, then xk0−1 < xk0 , and consequently, ξ2

k0−1 < ξ2
k0

, in other words,
it is consistent with the hypothesis that ψ is an R+ coding function adapted
to α. If p0 is prime, then xp0−1 = xp0 therefore (ÂT )′′(p̂0−) = (ÂT )′′(p̂0+)
is equivalent to

α− p0

p0
· xp0−1 ·

(
1

ξ2
p0−1

− 1

ξ2
p0

)
=
|yp0−1|
ξ2
α−p0

− |yp0 |
ξ2
α−p0−1

which in turn is equivalent to ii).

Now, let α be an even number (α ≥ 16). We will construct an R+ coding
function adapted to α in such a way that (ÂT )′′(k̂0−) = (ÂT )′′(k̂0+) for ev-
ery k0 ∈ {5, 6, . . . , α/2−1}. We would then have constructed the continuous
function

G : [4̂, α̂÷ 2̂]→ R+, G(k̂) = (ÂT )′′(k̂)

For this we select, at random, 0 < ξ2 < ξ3 < ξ4 < ξ5. According to proposi-
tion 3.1.1 x4, x5, . . . , x11 are readily determined. We select ξ2

6 = (x6/x5)ξ2
5 ,

then ξ6 > ξ5, and x12 and x13 are readily determined. We select ξ7 > ξ6

at random, and x14 and x15 are readily determined. We now take ξ2
8 =

(x8/x7)ξ2
7 , ξ2

9 = (x9/x8)ξ2
8 , ξ2

10 = (x10/x9)ξ2
9 , then ξ7 < ξ8 < ξ9 < ξ10, and

x16, . . . , x21 are readily determined. We select ξ11 > ξ10 at random, and x22

and x23 are readily determined. Note that for a prime i we are selecting ξi
at random with the sole condition ξi > ξi−1.

Let s0 be the largest prime such that s0 ≤ α/2−1. Then, following the same
principle, we take ξs0 > ξs0−1 at random, and x2s0 and x2s0+1 are readily
determined. Finally, we select

i) If s0 ≤ α/2− 2

ξ2
s0+1 =

xs0+1

xs0
ξ2
s0 , ξ

2
s0+2 =

xs0+2

xs0+1
ξ2
s0+1, . . . , ξ

2
α/2−1 =

xα/2−1

xα/2−2
ξ2
α/2−2
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ii) At random ξα/2−1 > ξα/2−2 if s0 = α/2− 1.

Following the remark of proposition 3.1.1 all the essential points Pk0 asso-
ciated with the number α have been determined. We select ξ2

α/2 at random
and are only have to determine which are to be the remaining coefficients.

i) If s0 = α/2− 1 we select

ξ2
α/2+1 = ξ2

α−(α/2−1) = ξ2
α−s0 =

|ys0−1|

(
|ys0 |

ξ2
α−s0−1

+
α− s0

s0
· xs0−1 ·

(
1

ξ2
s0−1

− 1

ξ2
s0

))−1

ii) If s0 < α/2− 1 we select

ξ2
α/2+1 = ξ2

α−(α/2−1)

= |yα/2−2| |yα/2−1|−1ξ2
α/2

ξ2
α/2+2 = ξ2

α−(α/2−2)

= |yα/2−3| |yα/2−2|−1ξ2
α/2+1

. . .

ξ2
α−s0−2 = |ys0+1| |ys0+2|−1ξ2

α/2−s0−3

ξ2
α−s0−1 = |ys0 | |ys0+1|−1ξ2

α/2−s0−2

We also verify ξ2
α−s0−1 = |ys0 | |yα/2−1|−1ξ2

α/2 . We now take

ξ2
α−s0 = |ys0−1|

(
|ys0 |

ξ2
α−s0−1

+
α− s0

s0
· xs0−1 ·

(
1

ξ2
s0−1

− 1

ξ2
s0

))−1

Having selected these first coefficients, we construct the remaining coeffi-
cients in the following way: for each prime r0 where 5 ≤ r0 < s0 we select

ξ2
α−r0 = |yr0−1|

(
|yr0 |

ξ2
α−r0−1

+
α− r0

r0
· xr0−1 ·

(
1

ξ2
r0−1

− 1

ξ2
r0

))−1

Between two consecutive primes p0 and q0, such that 5 ≤ p0 < q0 ≤ s0, we
select
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ξ2
α−q0+1 = |yq0−2||yq0−1|−1ξ2

α−q0
ξ2
α−q0+2 = |yq0−3||yq0−2|−1ξ2

α−q0+1

. . .
ξ2
α−p0−2 = |yp0+1||yp0+2|−1ξ2

α−p0−3

ξ2
α−p0−1 = |yp0 ||yp0+1|−1ξ2

α−p0−2

We also verify ξ2
α−p0−1 = |yp0 ||yq0−1|−1ξ2

α−q0 . We have now chosen the co-
efficients ξ2, ξ3, . . . , ξα/2−1, ξα/2, ξα/2+1, . . . , ξα−5. The remaining co-
efficients of the R+ coding function adapted to α are irrelevant. Due to
the actual construction of these coefficients, the hypotheses in proposition
3.1.2 are verified, and we have therefore constructed the following continuous
function

G : [4̂, α̂÷ 2̂]→ R+, G(k̂) = (ÂT )′′(k̂)

Definition 3.1.2. We call Goldbach Conjecture function associated
to α any function G constructed in this manner.

Proposition 3.1.3. Let G be a Goldbach Conjecture function with coeffi-
cients ξi associated to α. Let P = {r0 : r0 prime, 5 ≤ r0 ≤ α/2− 1} and let
s0 be the maximum of P. We call

Fr0 =
α− r0

r0
· xr0−1 ·

(
1

ξ2
r0−1

− 1

ξ2
r0

)

Then, ξ2
α−5 = |y4| ( |yα/2−1|ξ−2

α/2 +
∑
r0∈P

Fr0 )−1

Proof. According to the construction of any Goldbach Conjecture function
G we verify ξ2

α−s0 = |ys0−1| ( |yα/2−1|ξ−2
α/2 + Fs0 )−1 regardless of the fact

that s0 = α/2−1 or s0 < α/2−1. We now define the function γ : P−{5} →
P−{s0}, γ (p) as the prime number before p. Let q0 ∈ P−{5} and assume
that

ξ2
α−q0 = |yq0−1| ( |yα/2−1|ξ−2

α/2 + Fs0 + Fγ(s0) + Fγ2(s0) + ...+ Fγh(s0) )−1

where γh(s0) = q0. Now, let γ (q0) = p0. Thus, due to the construction of
the G function we verify

ξ2
α−p0 = |yp0−1| ( |yp0 |ξ−2

α−p0−1 + Fp0 )−1

= |yp0−1| ( |yq0−1|ξ−2
α−q0 + Fp0 )−1

= |yp0−1 |( |yα/2−1|ξ−2
α/2 + Fs0 + Fγ(s0) + . . .+ Fγh(s0) + Fγh+1(s0) )−1
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As a consequence, and taking p0 = 5, we obtain

ξ2
α−5 = |y4| ( |yα/2−1|ξ−2

α/2 + F5 + F7 + F11 + ...+ Fs0 )−1

= |y4| ( |yα/2−1|ξ−2
α/2 +

∑
r0 ∈ P

Fr0 )−1

Let α be an even number (α ≥ 16). Let G be any Goldbach Conjecture
function associated to α. Then, the G coefficients can be expressed in the
following way, where λi ∈ (1,+∞) for every i ∈ J = {3, 4} ∪P

ξ2 > 0, ξ3 = λ3ξ2, ξ4 = λ4ξ3, ξ5 = λ5ξ4, ξp0 = λp0ξp0−1 (∀p0 ∈ P− {5})

According to the construction of G, all the coefficients depend exclusively
on the variables ξ2, λi and ξα/2 > 0. We denote λ̄ = (λi) (i ∈ J ) thus, any
Goldbach Conjecture function associated to α can be written

G = G(α, ξ2, ξα/2, λ̄) (α ≥ 16, ξ2 > 0, ξα/2 > 0, λi > 1)

Proposition 3.1.4. Let G = G(α, ξ2, ξα/2, λ̄) be a Goldbach Conjecture func-

tion for the even number α (α ≥ 16) with coefficients ξi (2 ≤ i ≤ α−5). Let
us denote for every p0 ∈ P − {5}, P (p0) := {p : p prime, 5 ≤ p ≤ γ(p0)}.
Then, ∀p0 ∈ P− {5} we verify

(a)
xp0
ξ2
p0−1

=
1

2λ2
3λ

2
4

∏
j∈P (p0)

1

λ2
j

(b) F5 =
α− 5

5
· 1

2λ2
3λ

2
4

(
1− 1

λ2
5

)
(c) Fp0 =

α− p0

p0
· 1

2λ2
3λ

2
4

∏
j∈P (p0)

1

λ2
j

(
1− 1

λ2
p0

)
Proof. (a) The equality is true when p0 = 7. In fact, according to the
construction of G , we have

x7

ξ2
6

=
x6

ξ2
6

=
x5

ξ2
5

=
x4

λ2
5ξ

2
4

=
ξ2

2

2λ2
5λ

2
4λ

2
3ξ

2
2

=
1

2λ2
3λ

2
4

∏
j∈P (7)

1

λ2
j

We have used the fact that x4 = PI,4 = ξ2
2/2. Assume that the equality is

true for a prime p0 ∈ P− {5, s0}, we prove that it is also true for the next
prime q0 . With the actual construction of G, we obtain
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ξ2
q0−1 =

xq0−1

xp0
ξ2
p0 =

xq0
xp0

ξ2
p0 ⇒

xq0
ξ2
q0−1

=
xp0
ξ2
p0

=
xp0

λ2
p0
ξ2
p0−1

=

1

λ2
p0

· 1

2λ2
3λ

2
4

∏
j∈P (p0)

1

λ2
j

=
1

2λ2
3λ

2
4

∏
j∈P (q0)

1

λ2
j

(b)

F5 =
α− 5

5
x4

(
1

ξ2
4

− 1

ξ2
5

)
=
α− 5

5
·x4

ξ2
4

(
1− 1

λ2
5

)
=
α− 5

5
· 1

2λ2
3λ

2
4

(
1− 1

λ2
5

)
(c) For all p0 ∈ P− {5}

Fp0 =
α− p0
p0

·xp0−1

(
1

ξ2
p0−1

− 1

ξ2
p0

)
=
α− p0
p0

·
xp0
ξ2
p0−1

(
1− 1

λ2
p0

)
=
α− p0
p0

·

1

2λ2
3λ

2
4

∏
j∈P (p0)

1

λ2
j

(
1− 1

λ2
p0

)

Example 3.1 We construct the elements that intervene in any Goldbach
Conjecture function G where α = 18. In this case, α/2 = 9, α/2 − 1 =
8, α/2− 3 = 6. Then, the coefficients ξ2, ξ3, ξ4, ξ5 can be thus expressed

ξ2 > 0 , ξ3 = λ3ξ2 , ξ4 = λ4ξ3 , ξ5 = λ5ξ4 (λi > 1)

Then, x4, x5, . . . , x11 are readily determined. Using (2.5.2) and (2.5.3) we
obtain the expression of xi for i natural number (4 ≤ i ≤ 11)

x4 = ξ2
2/2

= x5 (5 prime)

x6 = ξ2ξ3 − ξ2
2/2

= (λ3 − 1/2)ξ2
2

= x7 (7 prime)

x8 = ξ2ξ4 − ξ2
2/2

= (λ4λ3 − 1/2)ξ2
2

Considering that |yj | = xα−j−1 (∀j ∈ N : 4 ≤ j ≤ α/2− 1)
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x9 = |y8|
= ξ2ξ4 − ξ2ξ3 + ξ2

3/2

= (λ4λ3 − λ3 + λ2
3/2)ξ2

2

x10 = |y7| = ξ2ξ5 − ξ2ξ3 + ξ2
3/2

= (λ5λ4λ3 − λ3 + λ2
3/2)ξ2

2

= x11

= |y6| (11 prime)

ξ2
6 = (x6/x5)ξ2

5

= 2(λ3 − 1/2)λ2
5λ

2
4λ

2
3ξ

2
2

Now x12 and x13 are readily determined

x12 = |y5|
= ξ2ξ6 − ξ2ξ4 + ξ3ξ4 − ξ2

3/2

= (λ5λ4λ3

√
2(λ3 − 1/2)− λ4λ3 + λ4λ

2
3 − λ2

3/2)ξ2
2

= x13 = |y4| (13 prime)

We have ξ2
7 = λ2

7ξ
2
6 and ξ2

8 = (x8/x7)ξ2
7 . Besides

F5 =
α− 5

5
· 1

2λ2
3λ

2
4

(
1− 1

λ2
5

)
F7 =

α− 7

7
· 1

2λ2
3λ

2
4λ

2
5

(
1− 1

λ2
7

)
Choosing at random ξ2

9 > 0, the remaining coefficients are readily deter-
mined

ξ2
10 = ξ2

α−8

=
|y7|
|y8|

ξ2
9

ξ2
11 = ξ2

α−7

= |y6| ( |y7|ξ−2
α−8 + F7 )−1

= |y6| ( |y8|ξ−2
9 + F7 )−1

ξ2
12 = ξ2

α−6

=
|y5|
|y6|

ξ2
α−7

= |y5| ( |y8|ξ−2
9 + F7 )−1
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ξ2
13 = ξ2

α−5

= |y4| ( |y5|ξ−2
α−6 + F5 )−1

= |y4| ( |y8|ξ−2
9 + F5 + F7 )−1

For ξ2 ∈ (0,+∞), λj ∈ (1,+∞), ξ9 ∈ (0,+∞), we obtain all the Gold-
bach Conjecture functions G associated to α = 18 : G = G(18, ξ2, ξ9, λ̄) with

λ̄ = (λ3, λ4, λ5, λ7).

Proposition 3.1.5. Let α be an even number (α ≥ 16), and G(α, ξ2, ξα/2, λ̄)

be any Goldbach Conjecture function associated to α. Denote n(α) :=
#(J ) (J = {3, 4} ∪P). Then, there exist functions

fi, gj , hj : (1,+∞)n(α) → R

with i ∈ N, j ∈ N, 2 ≤ i ≤ α/2− 3, 4 ≤ j ≤ α/2− 1 such that

i) ξ2
i = fi(λ̄)ξ2

2 ii) xj = gj(λ̄)ξ2
2 iii) |yj | = hj(λ̄)ξ2

2

Proof. Considering that |yj | = xα−j−1 (∀j ∈ N : 4 ≤ j ≤ α/2 − 1) is
sufficient to prove that there exist functions

fi, gj : (1,+∞)n(α) → R (i ∈ N, j ∈ N, 2 ≤ i ≤ α/2− 3, 4 ≤ j ≤ α− 5)

such that i)′ ξ2
i = fi(λ)ξ2

2 , ii)
′ xj = gj(λ)ξ2

2 . Then we would choose

hj = gα−j−1 (j ∈ N, 4 ≤ j ≤ α/2− 1)

Following the previous example, i)′ and ii)′ are true for the natural numbers
i, j where 2 ≤ i ≤ 5, 4 ≤ j ≤ 11 , that is, i)′ and ii)′ are true for every ξ2

i , xj
naturally associated to the prime p0 = 5. Now, regardless of the mentioned
example, we prove that i) and ii) are true for the natural numbers i, j where
6 ≤ i ≤ 7, 12 ≤ j ≤ 13. In fact,

ξ2
6 =

x6

x5
ξ2

5 =
g6(λ̄)

g5(λ̄)
f5(λ̄)ξ2

2 = f6(λ̄)ξ2
2 , if we define f6 = (g6/g5)f5

The addends that appear in x12 and x13 have the form ± ξlξk or ± ξ2
h/2,

(l, k, h natural numbers where 2 ≤ l ≤ 6, 2 ≤ k ≤ 6, 2 ≤ h ≤ 6), that is, we
have addends of the form

±
√
fl(λ̄)fk(λ̄)ξ2

2 or ±fh(λ̄)ξ2
2/2
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Thus, x12 and x13 can be written x12 = g12(λ̄)ξ2
2 , x13 = g13(λ̄)ξ2

2 . Now,
ξ2

7 = λ2
7ξ

2
6 = λ2

7f6(λ̄)ξ2
2 = f7(λ̄)ξ2

2 (if we define f7 = λ2
7f6) then, x14 and x15

are readily determined and their addends have the form ± ξlξk or ± ξ2
h/2

(l, k, h natural numbers where 2 ≤ l ≤ 7, 2 ≤ k ≤ 7, 2 ≤ h ≤ 7).

Following the reasoning stated above, x14 and x15 can be expressed x14 =
g14(λ̄)ξ2

2 , x15 = g15(λ̄)ξ2
2 . We now consider the prime p0 (where 7 < p0 ≤

s0). Following the previous outline we easily prove that if i)′ and ii)′ are true
for every i, j natural numbers (where 2 ≤ i ≤ γ(p0), 4 ≤ j ≤ 2γ(p0) + 1)
then i)′ and ii)′ are also true for every i, j natural numbers where 2 ≤ i ≤
p0, 4 ≤ j ≤ 2po + 1, being irrelevant whether s0 < α/2− 3 or not.

Corollary 3.1.1. Let α be an even number (α ≥ 16), and be G(α, ξ2, ξα/2, λ̄)

any Goldbach Conjecture function associated to α. Then, |xk0−1| |xk0 |−1 and
|yk0−1| |yk0 |−1 do not depend on ξ2

2, ∀k0 natural number, 5 ≤ k0 ≤ α/2− 1.

Definition 3.1.3. Let α be an even number (α ≥ 16), G = G(α, ξ2, ξα/2, λ̄)

any Goldbach Conjecture function associated to α. If λi = u ∈ (1,+∞),∀i ∈
{3, 4} ∪ P, we say that G is a scalar Goldbach Conjecture function
associated to α. We denote such a function by G = G(α, ξ2, ξα/2, u).

Proposition 3.1.6. Let α be an even number (α ≥ 16), G = G(α, ξ2, ξα/2, u)

any Goldbach Conjecture function associated to α. Then for every k0 ∈ N
with 4 ≤ k0 ≤ α− 5 we verify lim

u→1+
xk0 = ξ2

2/2.

Proof. We readily determine x4, x5, . . . x11 choosing

ξ2
3 = λ2

3ξ
2
2 = u2ξ2

2

ξ2
4 = λ2

3λ
2
4ξ

2
2 = u4ξ2

2

ξ2
5 = λ2

3λ
2
4λ

2
5ξ

2
2 = u6ξ2

2

Following the example 3.1

x4 = x5 = ξ2
2/2

x6 = x7 = (u− 1/2)ξ2
2

x8 = (u2 − 1/2)ξ2
2

x9 = (3u2/2− u)ξ2
2

x10 = x11 = (u3 + u2/2− u)ξ2
2

Therefore we verify limu→1+ xk0 = ξ2
2/2 for every k0 ∈ N with 4 ≤ k0 ≤ 11.

Now, ξ2
6 = (x6/x5)ξ2

5 thus
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lim
u→1+

ξ2
6 = lim

u→1+

x6

x5
u6ξ2

2 = ξ2
2

We have readily determined x12 and x13. Following (2.5.4), for any scalar
Goldbach G(α, ξ2, ξα/2, u) and for every natural number k0 with 12 ≤ k0 ≤
α− 5 and α ≥ 18 the expression of xk0 is (if b

√
k0 c = b k0/b

√
k0 c c)

xk0 = ξ2(ξbk0/2c − ξbk0/3c) + ξ3(ξbk0/3c − ξbk0/4c) + . . .+
ξb
√
k0 c−1( ξb k0/(b

√
k0 c−1) c − ξb k0/b√k0 c c ) + (1/2)ξ2

b
√
k0 c

If b
√
k0 c < b k0/b

√
k0 c c the expression of xk0 is

xk0 = ξ2(ξbk0/2c − ξbk0/3c) + ξ3(ξbk0/3c − ξbk0/4c) + . . .+
ξb
√
k0 c( ξb k0/b

√
k0 c c − (1/2)ξb

√
k0 c )

Considering that limu→1+ ξ
2
i = ξ2

2 (2 ≤ i ≤ 6) we conclude limu→1+ x12 =
limu→1+ x13 = ξ2

2/2. Now, ξ2
7 = λ2

7ξ
2
6 = u2ξ2

6 thus, limu→1+ ξ
2
7 = ξ2

2 . Accord-
ing to the construction of G and by a simple induction process we obtain

lim
u→1+

xk0 = ξ2
2/2 (∀k0 ∈ N, 2 ≤ k0 ≤ α− 5)

Corollary 3.1.2. Since |yj | = xα−j−1 (∀j ∈ N, 4 ≤ j ≤ α/2 − 1), then,
lim
u→1+

xk0 = lim
u→1+

|yk0 | = ξ2
2/2 (∀k0 ∈ N, 4 ≤ k0 ≤ α/2− 1).

3.2 Dynamic processes associated to N

Proposition 3.2.1. The following set is infinite:

A = {α ∈ N : α even, α ≥ 16, (α/2 and α− 3 composite)}

Proof. Consider A1 = {12k : k ∈ N, k ≥ 2}. Obviously 12k is even, α ≥ 16,
12k/2 = 6k is composite and 12k − 3 = 3(4k − 1) is also composite, thus
A1 ⊂ A and A1 is infinite. As a consequence, A is an infinite set.

Choose ξ2
2 = ξ2

α/2 = 1, fix (α, u) ∈ A× (1,+∞) and denote G(α,1,1,u) by G.

Consider the continuous function G : [4̂, α̂ ÷ 2̂] → R. From it we construct
the functions v, s : [4̂, α̂÷ 2̂]→ R

v(k̂) =

∫ k̂

4̂
G(τ) dτ, s(k̂) =

∫ k̂

4̂
v(τ) dτ
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Then s′(k̂) = v(k̂), v(4̂) = 0, s′′(k̂) = v′(k̂) = G(k̂), s(4̂) = 0. That is, we
have constructed a family of movements with continuous acceleration G(k̂)
that depend on u > 1 in which each state of time t = k̂ with t ∈ [4̂, α̂÷ 2̂] is
associated to the real number k (4 ≤ k ≤ α/2− 1) by means of the bijection
ψ−1(t) = k. Consequentially, each natural number k0 (4 ≤ k0 ≤ α/2− 1) is
associated with time state tk0 . Following the corollary 3.1.2 we verify

lim
u→1+

xk0 = 1/2, lim
u→1+

yk0 = −1/2, (4 ≤ k0 ≤ α/2− 1)

Also, considering the construction of G, we have limu→1+ ξ
2
i = 1 for all

2 ≤ i ≤ α/2 − 1. This means that in the limit position, ψ = ψ−1 = I
(identity function on [4, α/2]) and the essential points have been transformed
into

Pk0 = (xk0 , yk0) = (1/2,−1/2), (∀k0 ∈ N, 4 ≤ k0 ≤ α/2− 1)

In other words, the characterization 2.5.1 about the fact of being α the sum
of two prime numbers has been lost. This leads to the following conclusion

There exists at least a characterization of the Goldbach Conjecture in an
infinite set of even numbers that depends on time.

Note that we have identified instant of time with real number in the math-
ematical continuum constructed via Cauchy sequences or Dedekind cuts.
This identification could no be possible in the Brouwer’s continuum (‘time
is the only a priori of mathematics’ [2]).

How then do assertions arise which concern, not all natural, but
all real numbers, i.e., all values of a real variable? Brouwer shows
that frequently statements of this form in traditional analysis,
when correctly interpreted, simply concern the totality of natural
numbers. In cases where they do not, the notion of sequence
changes its meaning: it no longer signifies a sequence determined
by some law or other, but rather one that is created step by step
by free acts of choice, and thus remains in statu nascendi. This
becoming selective sequence represents the continuum, or the
variable, while the sequence determined ad infinitum by a law
represents the individual real number falling into the continuum.
The continuum no longer appears, to use Leibnizs language, as
an aggregate of fixed elements but as a medium of free becoming.
(H. Weyl [8])
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