Menú
-
Entradas recientes
- Ecuación funcional $f(x+y)=f(x)f(y)$
- Ecuación funcional de Cauchy
- Gráfica de $f(x)=x(x^2-1)^{-1/3}$
- Gráfica de la astroide $x=a\cos^3t,\;y=a\sin^3t,\; (a > 0) $
- Gráfica de $f(x)=xe^{-x}$
- Gráfica de $f(x)=\sqrt{8+x}-\sqrt{8-x}$
- Gráfica de $f(x)=\sqrt{x}+\sqrt{4-x}$
- Gráfica de $f(x)=\dfrac{x^3}{x^2-1}$
- Gráfica de $f(x)=\dfrac{x^3}{(x-1)^2}$
- Gráfica de $f(x)=\dfrac{1}{9}(6x^2-x^4)$
- Gráfica de $f(x)=|x^3-3x^2|$
- Representación gráfica de $f(x)=x^3-3x^2$
- Cálculo de una raíz de forma heurística.
- Concepto de conjunto compacto
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: Fresnel
Convergencia de las integrales de Fresnel
Demostramos la convergencia de las integrales de Fresnel. Enunciado Demostrar que las integrales de Fresnel $$\int_0^{+\infty}\cos x^2\;dx,\quad \int_0^{+\infty}\text{sen } x^2\;dx,$$ son convergentes. Solución Haremos la demostración para $\int_0^{+\infty}\cos x^2\;dx,$ el razonamiento es análogo para la otra integral. Efectuando el cambio … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado convergencia, Fresnel, integrales
Comentarios desactivados en Convergencia de las integrales de Fresnel
Integrales de Fresnel
Enunciado Se sabe que las integrales de Fresnel: $$ I_1=\displaystyle\int_0^{+\infty}\cos x^2\;dx,\quad I_2=\displaystyle\int_0^{+\infty}\operatorname{sen} x^2\;dx,$$ son convergentes. Calcular su valor. Indicación: usar la integral de Euler, es decir $ \displaystyle\int_0^{+\infty}e^ {-x^2}\;dx=\dfrac{\sqrt{\pi}}{2} .$ Solución Consideremos la función $ f(z)=e^{iz^2} $ y el contorno … Sigue leyendo
Publicado en Análisis real y complejo, Miscelánea matemática
Etiquetado Fresnel, integrales
Comentarios desactivados en Integrales de Fresnel