Menú
-
Entradas recientes
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
- Relación de Fibonacci $f_{2n+1}=f_n^2+f_{n+1}^2$
- Producto directo externo de grupos
- Sistema libre de infinitas funciones troceadas
- Máximo y mínimo absolutos del módulo de una función compleja
- Anuladores de núcleo e imagen y aplicación transpuesta
- Cuerpo de fracciones de un dominio de integridad
- Existencia de ideales maximales
- Integral compleja dependiente de dos parámetros
- Dibujo de una conica mediante el teorema espectral
- Matriz inversa con parámetro
- Espacios topológicos finitos metrizables
- Equivalencia entre toda distancia y su acotada usual
- Distancia acotada usual
- Mínima $\sigma-$álgebra que contiene a otra y a un conjunto
- Lema de Uryshon
- Puntos críticos con caso dudoso
- Máximo de una función con números combinatorios
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: funcional
Ecuación funcional compleja
Resolvemos una ecuación diferencial compleja. Enunciado Determinar todas las funciones enteras $f$ que satisfacen la ecuación funcional compleja $$f(2z)=\frac{f(z)+f(-z)}{2},\qquad \forall z\in \mathbb{C}$$ Solución Si $f$ es una función entera, se puede expresar en todo el plano conlejo como suma de … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado compleja, ecuación, funcional
Comentarios desactivados en Ecuación funcional compleja
Sucesión funcional con límite Gamma (x)
Estudiamos una sucesión funcional que tiene como límite la función gamma de Euler. Enunciado Para cada entero positivo $n$ se considera la función definida por $I_n(x)=\displaystyle\int_{0}^{n}t^{x-1}\left(1-\displaystyle\frac{t}{n}\right)^ndt\quad (x>0),$ y se pide (a) Determinar explícitamente $I_1(x),\;I_2(x),\;I_3(x).$ (b) Determinar la expresión explícita de … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado funcional, gamma, límite, sucesión
Comentarios desactivados en Sucesión funcional con límite Gamma (x)
Independencia funcional
Definimos la independencia funcional y la comparamos con la independencia lineal. Enunciado Demostrar que si $v^1,v^2,\ldots,v^p$ son funcionalmente independientes, también son linealmente independientes. Demostrar que $$v^1=\begin{bmatrix}{e^{-t}}\\{0}\\{-1}\\{e^{-t}}\end{bmatrix}\;,\quad v^2=\begin{bmatrix}{0}\\{t^2}\\{0}\\{-1}\end{bmatrix}\;,\quad v^3=\begin{bmatrix}{1}\\{t^2}\\{-e^{-t}}\\{0}\end{bmatrix}$$ son linealmente independientes en $[0,1],$ pero funcionalmente dependientes. Solución Sean $\alpha_1,\alpha_2,\ldots,\alpha_p\in\mathbb{K}$ tales … Sigue leyendo
Publicado en Ecuaciones diferenciales
Etiquetado funcional, independencia
Comentarios desactivados en Independencia funcional