Menú
-
Entradas recientes
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Problema de las coincidencias de Montmort
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
- Relación de Fibonacci $f_{2n+1}=f_n^2+f_{n+1}^2$
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: métricos
Conjuntos acotados en espacios métricos
RESUMEN. Definimos el concepto de conjunto acotado en espacios métricos y damos dos ejemplos de aplicación. Enunciado Sea $(X,d)$ un espacio métrico y $A\subset X$ no vacío. Se dice que $A$ está acotado si existe una bola $B(p,r)$ en $X$ … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado acotados, conjuntos, espacios, métricos
Comentarios desactivados en Conjuntos acotados en espacios métricos
Continuidad uniforme en espacios métricos por sucesiones
Demostramos un teorema de caracterización de la continuidad uniforme en espacios métricos, por sucesiones y damos un ejemplo de aplicación. Enunciado Sean $(X,d)$, $(Y,d’)$ dos espacios métricos y $f:X\to Y$ una aplicación. Demostrar que las dos siguientes afirmaciones son equivalentes: … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado continuidad, espacios, métricos, sucesiones, uniforme
Comentarios desactivados en Continuidad uniforme en espacios métricos por sucesiones