Menú
-
Entradas recientes
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
- Relación de Fibonacci $f_{2n+1}=f_n^2+f_{n+1}^2$
- Producto directo externo de grupos
- Sistema libre de infinitas funciones troceadas
- Máximo y mínimo absolutos del módulo de una función compleja
- Anuladores de núcleo e imagen y aplicación transpuesta
- Cuerpo de fracciones de un dominio de integridad
- Existencia de ideales maximales
- Integral compleja dependiente de dos parámetros
- Dibujo de una conica mediante el teorema espectral
- Matriz inversa con parámetro
- Espacios topológicos finitos metrizables
- Equivalencia entre toda distancia y su acotada usual
- Distancia acotada usual
- Mínima $\sigma-$álgebra que contiene a otra y a un conjunto
- Lema de Uryshon
- Puntos críticos con caso dudoso
- Máximo de una función con números combinatorios
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: módulo
Máximo y mínimo absolutos del módulo de una función compleja
RESUMEN. Determinamos el máximo y mínimo absolutos del módulo de una función compleja en el disco cerrado unidad. Enunciado Determinar los valores máximo y mínimo absolutos de $\left|z^{2n+m}+iaz^{n+m}+z^m\right|$ en $\left|z\right|\le 1$ con $a\in \mathbb{R}$ y $n,m$ enteros no negativos. Solución … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado máximo, mínimo, módulo
Comentarios desactivados en Máximo y mínimo absolutos del módulo de una función compleja
Principio del módulo máximo
Propoorcionamos ejemplos de aplicación del principio del módulo máximo. Enunciado Sea el disco unidad $\mathbb{D}=\{z\in\mathbb{C}:\left|z\right|<1\}$ y sea $f$ una función holomorfa en $\mathbb{D},$ continua en $\overline{\mathbb{D}}$ y no constante. Analizar cuales de cada una de las siguientes situaciones es posible … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado máximo, módulo, principio
Comentarios desactivados en Principio del módulo máximo