Menú
-
Entradas recientes
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Problema de las coincidencias de Montmort
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: complejo
Módulo del seno complejo y del coseno complejo
RESUMEN. Determinamos el módulo del seno complejo y del coseno complejo. Enunciado Sea $z=x+iy\in\mathbb C$ con $x,y\in\mathbb R$. Demostrar que $$(a)\; \left|\sin z\right| = \sqrt {\sin^2 x + \sinh^2 y}.\qquad (b)\;\left|\cos z\right| = \sqrt {\cos^2 x + \sinh^2 y}.$$ Solución … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado complejo, coseno, módulo, seno
Comentarios desactivados en Módulo del seno complejo y del coseno complejo
Análisis real y complejo
Proporcionamos una colección de problemas resueltos de Análisis real y complejo. Se irán añadiendo otros sucesivamente. Método de inducción Descripción del método de inducción Derivada enésima de la función seno Desigualdad de Bernoulli Binomio de Newton Regiones determinadas por $n$ … Sigue leyendo
Etiquetado análisis, complejo, problemas, real
Deja un comentario
Realificación de un espacio vectorial complejo
Estudiamos la realificación de un espacio vectorial complejo. Enunciado Sea $E$ un espacio vectorial sobre $\mathbb{C}$ al que denotamos por $E(\mathbb{C}).$ Se define el espacio realificado de $E(\mathbb{C})$ y se denota por $E(\mathbb{R})$ al espacio vectorial sobre $\mathbb{R}$ obtenido al … Sigue leyendo
Publicado en Álgebra
Etiquetado complejo, espacio, realificación, vectorial
Comentarios desactivados en Realificación de un espacio vectorial complejo
Raíz cuadrada de un número complejo
Demostramos una fórmula general para hallar la raíz cuadrada de un número complejo. Enunciado Siendo $a,b\in\mathbb{R},$ calcular $\sqrt{a+bi}$ expresando el resultado en forma binómica. Solución Para $x,y\in\mathbb{R},$ tenemos las equivalencias $$\sqrt{a+bi}=x+yi\Leftrightarrow (x+yi)^2=a+bi\Leftrightarrow x^2-y^2+2xyi=a+bi$$ $$\Leftrightarrow \left \{ \begin{matrix} \displaystyle\begin{aligned} & x^2-y^2=a\\& … Sigue leyendo
Logaritmo complejo
Estudiamos propiedades del logaritmo complejo. Enunciado Demostrar que $z=0$ no tiene logaritmos y que si $z\neq 0$ entonces $$\log z=\log \left|z\right|+i\arg z,$$ en donde $\arg z$ representa el conjunto de los argumento de $z.$ Interpretar $\log z$ como una aplicación … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado complejo, logaritmo
Comentarios desactivados en Logaritmo complejo