Menú
-
Entradas recientes
- Ecuación funcional $f(x+y)=f(x)f(y)$
- Ecuación funcional de Cauchy
- Gráfica de $f(x)=x(x^2-1)^{-1/3}$
- Gráfica de la astroide $x=a\cos^3t,\;y=a\sin^3t,\; (a > 0) $
- Gráfica de $f(x)=xe^{-x}$
- Gráfica de $f(x)=\sqrt{8+x}-\sqrt{8-x}$
- Gráfica de $f(x)=\sqrt{x}+\sqrt{4-x}$
- Gráfica de $f(x)=\dfrac{x^3}{x^2-1}$
- Gráfica de $f(x)=\dfrac{x^3}{(x-1)^2}$
- Gráfica de $f(x)=\dfrac{1}{9}(6x^2-x^4)$
- Gráfica de $f(x)=|x^3-3x^2|$
- Representación gráfica de $f(x)=x^3-3x^2$
- Cálculo de una raíz de forma heurística.
- Concepto de conjunto compacto
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: integral
Número combinatorio $\binom{2n}{n}$ e integral
Expresamos el número combinatorio $\binom{2n}{n}$ en términos de una integral definida. Enunciado Para todo entero positivo $n$, demostrar la relación $$\displaystyle\binom{2n}{n}=\frac{2^{2n}}{(2n+1)\int_0^1(1-x^2)^ndx}.$$ Solución Integrando por partes con $u=(1-x^2)^n$ y $dv=dx$ tenemos $$\int_0^1(1-x^2)^ndx =\left[ x(1-x^2)^n\right]_0^1+2n\int_0^1x^2(1-x^2)^{n-1}dx$$ $$=0-2n\int_0^1(1-x^2-1)(1-x^2)^{n-1}dx$$ $$=-2n\int_0^1(1-x^2)^ndx+2n\int_0^1(1-x^2)^{n-1}dx.$$Obtenemos por tanto la relación $$\int_0^1(1-x^2)^ndx=\frac{2n}{2n+1}\int_0^1(1-x^2)^{n-1}dx.$$ … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado $binom{2n}{n}$, combinatorio, integral, número
Comentarios desactivados en Número combinatorio $\binom{2n}{n}$ e integral
Integral triple $\iiint_Tx^my^nz^p(1-x-y-z)^qdxdydz$
Enunciado Calcular la integral triple $$I=\iiint_Tx^my^nz^p(1-x-y-z)^qdxdydz$$ siendo $T$ el recinto limitado por los tres planos coordenados y el plano $x+y+z=1,$ y $m,$ $n,$ $p,$ $q$ enteros positivos. Solución Podemos expresar $I$ como las integrales reiteradas $$I=\int_0^1x^mdx\int_0^{1-x}y^ndy\int_0^{1-x-y}z^p(1-x-y-z)^qdz.$$ Denotando $a=1-x-y,$ la tercera … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado integral, triple
Comentarios desactivados en Integral triple $\iiint_Tx^my^nz^p(1-x-y-z)^qdxdydz$
Integral $\int_{0}^{+\infty}\frac{\log (x^2+1)}{x^2+1}dx$ por residuos
Enunciado Calcular $\displaystyle\int_{0}^{+\infty}\frac{\log (x^2+1)}{x^2+1}dx$. Sugerencia: considerar $\displaystyle\int_{\gamma}\frac{\log (z+i)}{z^2+1}dz$ siendo $\gamma$ la curva $ABCA$ de la figura Solución Sea $\Gamma$ la curva $ABC,$ es decir la semicircunferencia superior. Tenemos $$\int_{-R}^{R}\frac{\log (x+i)}{x^2+1}dx+\int_{\Gamma}\frac{\log (z+i)}{z^2+1}dz=\int_{\gamma}\frac{\log (z+i)}{z^2+i}dz.\quad (1)$$ Podemos expresar $$\int_{-R}^{R}\frac{\log (x+i)}{x^2+1}dx=\int_{-R}^{0}\frac{\log (x+i)}{x^2+1}dx+\int_{0}^{R}\frac{\log (x+i)}{x^2+1}dx$$ $$\underbrace{=}_{t=-x}\int_{R}^{0}\frac{\log … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado $int_{0}^{+infty}frac{log (x^2+1)}{x^2+1}dx$, integral, residuos
Comentarios desactivados en Integral $\int_{0}^{+\infty}\frac{\log (x^2+1)}{x^2+1}dx$ por residuos
Integral $ \int_0^{+\infty}x^n\;dx/(x^{2n+1}+1) $
Enunciado (a) Determinar y clasificar las singularidades de la función compleja de variable compleja $f(z),$ siendo $n$ un entero positivo. Hallar el valor del residuo en dichas singularidades. $$f(z)=\dfrac{z^n}{z^{2n+1}+1}.$$ (b) Aplicando la técnica de residuos calcular la integral real impropia: … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado $int_0^{+infty}x^n;dx/(x^{2n+1}+1)$, integral
Comentarios desactivados en Integral $ \int_0^{+\infty}x^n\;dx/(x^{2n+1}+1) $
Integral $ \int_0^{2\pi}\frac{\cos 3t}{1-2a\cos t+a^2}\;dt $
Enunciado Calcular la integral $$I(a)=\displaystyle\int_0^{2\pi}\dfrac{\cos 3t}{1-2a\cos t+a^2}\;dt$$ para todos los posibles valores del parámetro real $a.$ (Propuesto en examen, Amp. Calc., ETS de Ing. Industriales, UPM). Solución Veamos para qué valores de $a\in\mathbb{R}$ la integral $I(a)$ es convergente. Dado que … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado $int_0^{2pi}frac{cos 3t}{1-2acos t+a^2};dt$, integral
Comentarios desactivados en Integral $ \int_0^{2\pi}\frac{\cos 3t}{1-2a\cos t+a^2}\;dt $