Menú
-
Entradas recientes
- Ecuación funcional $f(x+y)=f(x)f(y)$
- Ecuación funcional de Cauchy
- Gráfica de $f(x)=x(x^2-1)^{-1/3}$
- Gráfica de la astroide $x=a\cos^3t,\;y=a\sin^3t,\; (a > 0) $
- Gráfica de $f(x)=xe^{-x}$
- Gráfica de $f(x)=\sqrt{8+x}-\sqrt{8-x}$
- Gráfica de $f(x)=\sqrt{x}+\sqrt{4-x}$
- Gráfica de $f(x)=\dfrac{x^3}{x^2-1}$
- Gráfica de $f(x)=\dfrac{x^3}{(x-1)^2}$
- Gráfica de $f(x)=\dfrac{1}{9}(6x^2-x^4)$
- Gráfica de $f(x)=|x^3-3x^2|$
- Representación gráfica de $f(x)=x^3-3x^2$
- Cálculo de una raíz de forma heurística.
- Concepto de conjunto compacto
- Integral de una función escalonada
- Aparente desviación del teorema del punto fijo
- Vértices de un triángulo equilátero
- Puntos de inflexión que yacen en una curva
- Extremos de $f(x,y)=x^3+y^3$ sobre una elipse
- Principio del argumento
- Desigualdad con logaritmos
- Determinación de una transformación de Möbius
- Transformaciones de Möbius elementales
- Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
- Grupo de las transformaciones de Möbius
- Inversa de la transformación de Möbius
- Endomorfismo complejo con matriz normal
- Ecuación $x^3-x+2=0$ en los complejos
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: Möbius
Determinación de una transformación de Möbius
RESUMEN. Demostramos que toda transformación de Möbius queda determinada conociendo los transformados de una terna de elementos distintos de $\mathbb{C}_\infty$ en otra terna de elementos distintos de $\mathbb{C}_\infty.$ Enunciado Demostrar que si una transformación de Möbius deja fijos los puntos … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado dterminación, Möbius, transformación
Comentarios desactivados en Determinación de una transformación de Möbius
Transformaciones de Möbius elementales
RESUMEN. Demostramos que toda transformación de Möbius es composición de transformaciones de Möbius elementales. Sean la transformaciones $$ \text{(i) Traslaciones. } z\mapsto a+z, (a\in\mathbb C)\quad \text{(ii) Giros. } z\mapsto e^{i\alpha}z, (\alpha \in \mathbb R)$$ $$\begin{aligned}& \text{(iii) Dilataciones. } z\mapsto rz, … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado elementales, Möbius, transformaciones
Comentarios desactivados en Transformaciones de Möbius elementales
Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
RESUMEN. Demostramos que el grupo de las transformaciones de Möbius es isomorfo al grupo lineal complejo de orden 2 sobre su centro. Enunciado Sea $\text{GL}_2(\mathbb{C})$ el grupo lineal de las matrices cuadradas complejas de orden $2$ y $\mathcal{M}$ el grupo … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado escalares, grupo, isomorfismo, matrices, Möbius
Comentarios desactivados en Isomorfismo entre el grupo de Möbius y $\text{GL}_2(\mathbb{C})/Z$
Grupo de las transformaciones de Möbius
RESUMEN. Demostramos las transformaciones de Möbius forman un grupo con la operación composición. Si $T=\dfrac{az+b}{cz+d}$ es una transformación de Möbius, denominamos a la matriz $$M_T=\begin{bmatrix}{a}&{b}\\{c}&{d}\end{bmatrix}$$ matriz asociada $T$ y claramente $\det M_T\ne 0.$ Enunciado (1) Sean $T_1$ y $T_2$ dos … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado grupo, Möbius, transformaciones
Comentarios desactivados en Grupo de las transformaciones de Möbius
Inversa de la transformación de Möbius
RESUMEN. Demostramos que toda transformación de Möbius es aplicación biyectiva y determinamos su inversa. Enunciado Sea $\mathbb C_{\infty}=\mathbb C \cup {\infty}$ el plano complejo ampliado. Se llama transformación de Mobius a cualquier función $T:\mathbb{C}_\infty\to\mathbb{C}_\infty$ definida por $$T(z)=\frac{az+b}{cz+d} \text{ con } … Sigue leyendo
Publicado en Álgebra
Etiquetado inversa, Möbius, transformación
Comentarios desactivados en Inversa de la transformación de Möbius