Archivo de la etiqueta: diferencial

Sistema diferencial dependiente de un parámetro

Hallamos la solución general de un sistema diferencial dependiente de un parámetro. Enunciado Resolver el sistema diferencial $$\begin{cases}{x^{\prime}}=cx+y+2\\{y^{\prime}}=-c^2x-cy+1 \end{cases}\quad (c\in\mathbb{R}).$$ Solución En forma matricial, $$\begin{bmatrix}{x^\prime}\\{y^\prime}\end{bmatrix}=\begin{bmatrix}{c}&{1}\\{-c^2}&{-c}\end{bmatrix}\begin{bmatrix}{x}\\{y}\end{bmatrix}+\begin{bmatrix}{2}\\{1}\end{bmatrix}.$$ Hallemos la forma de Jordan de la matriz $A=\begin{bmatrix}{c}&{1}\\{-c^2}&{-c}\end{bmatrix}.$ El polinomio característico de $A$ es … Sigue leyendo

Publicado en Ecuaciones diferenciales | Etiquetado , , , | Comentarios desactivados en Sistema diferencial dependiente de un parámetro

La ecuación diferencial aritmética $n^\prime=n$

Derivada aritmética (menú) Resolvemos la ecuación diferencial aritmética $n^\prime=n$. Para ello, demostramos propiedades previas. Enunciado Demostrar que si $n=p^pm$ con $p$ primo y $m > 1$ natural, entonces $n^\prime=p^p(m+m^\prime)$ y $\lim_{k\to \infty}n^{(k)}=\infty.$ Sea $n$ número natural y $p^k$ la mayor … Sigue leyendo

Publicado en Miscelánea matemática | Etiquetado , , , | Comentarios desactivados en La ecuación diferencial aritmética $n^\prime=n$