Menú
-
Entradas recientes
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Problema de las coincidencias de Montmort
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: parámetro
Matriz inversa con parámetro
RESUMEN. Usando el método de Gauss, hallamos la inversa de una matriz con parámetro. Enunciado Dada la matriz dependiente del parámetro $x\in\mathbb{R}$: $$A=\begin{bmatrix}{1}&{x}&{1}\\{0}&{1}&{x}\\{1}&{0}&{1}\end{bmatrix},$$ determinar su inversa, cuando exista, aplicando el método de Gauus. Solución Aplicando el método de Gauus, $$\begin{aligned} … Sigue leyendo
Sistema diferencial dependiente de un parámetro
Hallamos la solución general de un sistema diferencial dependiente de un parámetro. Enunciado Resolver el sistema diferencial $$\begin{cases}{x^{\prime}}=cx+y+2\\{y^{\prime}}=-c^2x-cy+1 \end{cases}\quad (c\in\mathbb{R}).$$ Solución En forma matricial, $$\begin{bmatrix}{x^\prime}\\{y^\prime}\end{bmatrix}=\begin{bmatrix}{c}&{1}\\{-c^2}&{-c}\end{bmatrix}\begin{bmatrix}{x}\\{y}\end{bmatrix}+\begin{bmatrix}{2}\\{1}\end{bmatrix}.$$ Hallemos la forma de Jordan de la matriz $A=\begin{bmatrix}{c}&{1}\\{-c^2}&{-c}\end{bmatrix}.$ El polinomio característico de $A$ es … Sigue leyendo
Publicado en Ecuaciones diferenciales
Etiquetado dependiente, diferencial, parámetro, sistema
Comentarios desactivados en Sistema diferencial dependiente de un parámetro
Derivación de integrales dependientes de un parámetro
Demostramos los teoremas de derivación de integrales dependientes de un parámetro (tanto con límites de integración constantes como variables) y proporcionamos ejemplos de aplicación. Definición. Sean $[a,b]$ y $[\alpha,\beta]$ dos intervalos reales y $$f:[a,b]\times [\alpha,\beta]\to \mathbb{R},\quad (x,\lambda) \to f(x,\lambda)$$ una … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado dependientes, derivación, integrales, parámetro
Comentarios desactivados en Derivación de integrales dependientes de un parámetro
Convergencia de una serie según parámetro
Analizamos la convergencia de una serie que depende de un parámetro. Enunciado Analizar la convergencia de la serie $\displaystyle\sum_{n=1}^{+\infty}\left|\log\left(\cos\dfrac{1}{n}\right)\right|^p$ según el parámetro $p\in\mathbb{R}$. Solución Dado que $0<1/n<\pi/2$ para todo $n=1,2,\ldots$, se verifica $\cos (1/n)>0$ y por tanto la serie está … Sigue leyendo
Publicado en Análisis real y complejo
Etiquetado convergencia, parámetro, serie
Comentarios desactivados en Convergencia de una serie según parámetro
Sistemas diferenciales según parámetro
Enunciado Para cada valor real del parámetro $a$ se considera la matriz $A=\begin{bmatrix}{0}&{1}\\{1-a}&{a}\end{bmatrix}.$ Clasificar los sistemas diferenciales $X’=AX.$ (Propuesto en examen, Amp. Mat., ETS de Ing. de Montes, UPM). Solución Hallemos los valores propios de $A:$ $\begin{aligned} \left|A-\lambda I\right|&= \lambda^2-(\mbox{tr}A)\lambda+\det … Sigue leyendo
Publicado en Ecuaciones diferenciales
Etiquetado diferenciales, parámetro, sistemas
Comentarios desactivados en Sistemas diferenciales según parámetro