Archivo de la etiqueta: parámetro

Matriz inversa con parámetro

RESUMEN. Usando el método de Gauss, hallamos la inversa de una matriz con parámetro. Enunciado Dada la matriz dependiente del parámetro $x\in\mathbb{R}$: $$A=\begin{bmatrix}{1}&{x}&{1}\\{0}&{1}&{x}\\{1}&{0}&{1}\end{bmatrix},$$ determinar su inversa, cuando exista, aplicando el método de Gauus. Solución Aplicando el método de Gauus, $$\begin{aligned} … Sigue leyendo

Publicado en Álgebra | Etiquetado , , | Comentarios desactivados en Matriz inversa con parámetro

Sistema diferencial dependiente de un parámetro

Hallamos la solución general de un sistema diferencial dependiente de un parámetro. Enunciado Resolver el sistema diferencial $$\begin{cases}{x^{\prime}}=cx+y+2\\{y^{\prime}}=-c^2x-cy+1 \end{cases}\quad (c\in\mathbb{R}).$$ Solución En forma matricial, $$\begin{bmatrix}{x^\prime}\\{y^\prime}\end{bmatrix}=\begin{bmatrix}{c}&{1}\\{-c^2}&{-c}\end{bmatrix}\begin{bmatrix}{x}\\{y}\end{bmatrix}+\begin{bmatrix}{2}\\{1}\end{bmatrix}.$$ Hallemos la forma de Jordan de la matriz $A=\begin{bmatrix}{c}&{1}\\{-c^2}&{-c}\end{bmatrix}.$ El polinomio característico de $A$ es … Sigue leyendo

Publicado en Ecuaciones diferenciales | Etiquetado , , , | Comentarios desactivados en Sistema diferencial dependiente de un parámetro

Derivación de integrales dependientes de un parámetro

Demostramos los teoremas de derivación de integrales dependientes de un parámetro (tanto con límites de integración constantes como variables) y proporcionamos ejemplos de aplicación. Definición. Sean $[a,b]$ y $[\alpha,\beta]$ dos intervalos reales y $$f:[a,b]\times [\alpha,\beta]\to \mathbb{R},\quad (x,\lambda) \to f(x,\lambda)$$ una … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , , | Comentarios desactivados en Derivación de integrales dependientes de un parámetro

Convergencia de una serie según parámetro

Analizamos la convergencia de una serie que depende de un parámetro. Enunciado Analizar la convergencia de la serie $\displaystyle\sum_{n=1}^{+\infty}\left|\log\left(\cos\dfrac{1}{n}\right)\right|^p$ según el parámetro $p\in\mathbb{R}$. Solución Dado que $0<1/n<\pi/2$ para todo $n=1,2,\ldots$, se verifica $\cos (1/n)>0$ y por tanto la serie está … Sigue leyendo

Publicado en Análisis real y complejo | Etiquetado , , | Comentarios desactivados en Convergencia de una serie según parámetro

Sistemas diferenciales según parámetro

Enunciado Para cada valor real del parámetro $a$ se considera la matriz $A=\begin{bmatrix}{0}&{1}\\{1-a}&{a}\end{bmatrix}.$ Clasificar los sistemas diferenciales $X’=AX.$ (Propuesto en examen, Amp. Mat., ETS de Ing. de Montes, UPM). Solución Hallemos los valores propios de $A:$ $\begin{aligned} \left|A-\lambda I\right|&= \lambda^2-(\mbox{tr}A)\lambda+\det … Sigue leyendo

Publicado en Ecuaciones diferenciales | Etiquetado , , | Comentarios desactivados en Sistemas diferenciales según parámetro