Menú
-
Entradas recientes
- Separación de puntos y espacios de Hausdorff
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Problema de las coincidencias de Montmort
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: base
Teorema de la base de Hilbert
Demostramos el teorema de la base de Hilbert y como corolario, que para todo cuerpo $k$, el anillo de polinomios $k[x_1,\ldots,x_n]$ es noetheriano. Teorema (de la base de Hilbert). Sea $A$ anillo conmutativo y unitario. Entonces, $$A\text{ es noetheriano}\Rightarrow A[x]\text{ … Sigue leyendo
Publicado en Miscelánea matemática
Etiquetado base, Hilbert, noetheriano, teorema
Comentarios desactivados en Teorema de la base de Hilbert
Formas bilineales: cambio de base
Proporcionamos ejercicios de cambio de base asociado a las formas bilineales. Enunciado La matriz de una forma bilineal $f=E\times F\to\mathbb{K}$ en las bases $B_E=\{u_1,u_2\}$ y $B_F=\{v_1,v_2,v_3\}$ es $$A=\begin{bmatrix}{2}&{-1}&{1}\\{3}&{4}&{1}\end{bmatrix}.$$ Hallar la matriz de $f$ en las nuevas bases $$B’_E=\{u_1-u_2,u_1+u_2\},\quad B’_F=\{v_1,v_1+v_2,v_1+v_2+v_3\}.$$ La … Sigue leyendo
Publicado en Álgebra
Etiquetado base, bilineales, cambio, formas
Comentarios desactivados en Formas bilineales: cambio de base
Teorema de la base incompleta
Damos ejemplos de aplicación del teorema de la base incompleta. Enunciado Dados los vectores de $\mathbb{R}^4,$ $v_1=(2,-1,3,4)$ y $v_2=(0,5,1,-1),$ completarlos con otros dos para formar una base de $\mathbb{R}^4.$ Sea $B=\{u_1,\ldots,u_r,u_{r+1},\ldots,u_n\}$ base de un espacio vectorial $E.$ Demostrar que $$E=\langle … Sigue leyendo
Publicado en Álgebra
Etiquetado base, incompleta, teorema
Comentarios desactivados en Teorema de la base incompleta
Cambio de base
Proporcionamos ejercicios sobre cambio de base en espacios vectoriales. Enunciado Sean $B=\{u_1,u_2\}$ y $B’=\{u’_1,u’_2\},$ dos bases de un espacio vectorial real $E$ de dimensión $2$ tales que $u’_1=u_1-2u_2,$ $u’_2=3u_1+4u_2.$ Se pide hallar: $a)$ La matriz de cambio o de paso … Sigue leyendo
Publicado en Álgebra
Etiquetado base, cambio, espacios, vecroriales
Comentarios desactivados en Cambio de base
Existencia de base en todo espacio vectorial
Demostramos la existencia de base en todo espacio vectorial. Enunciado Sea $E$ un espacio vectorial sobre el cuerpo $\mathbb{K}$ y $S$ un subconjunto de $E$ linealmente independiente. Entonces, existe una base $B$ de $E$ que contiene a $S.$ Demostrar que … Sigue leyendo
Publicado en Álgebra
Etiquetado base, espacio, existencia, vectorial
Comentarios desactivados en Existencia de base en todo espacio vectorial