Archivo de la etiqueta: bilineales

Suma directa de las formas bilineales simétricas y antisimétricas

Demostramos que el espacio vectorial $\mathcal{B}(E)$ de las formas bilneales es suma directa de los subespacios de las simétricas y antisimétricas. Enunciado Sea $E$ espacio vectorial sobre el cuerpo $\mathbb{K}$ y $\mathcal{B}(E)$ el espacio vectorial de las formas bilineales de … Sigue leyendo

Publicado en Álgebra | Etiquetado , , , , , | Comentarios desactivados en Suma directa de las formas bilineales simétricas y antisimétricas

Diagonalización de formas bilineales simétricas

Proporcionamos ejercicios sobre diagonalización de formas bilineales simétricas usando el método de las transformaciones elementales por filas y columnas. Enunciado Se considera la forma bilineal simétrica en un espacio vectorial real de dimensión $3$ cuya expresión en coordenadas en una … Sigue leyendo

Publicado en Álgebra | Etiquetado , , , | Comentarios desactivados en Diagonalización de formas bilineales simétricas

Formas bilineales: cambio de base

Proporcionamos ejercicios de cambio de base asociado a las formas bilineales. Enunciado La matriz de una forma bilineal $f=E\times F\to\mathbb{K}$ en las bases $B_E=\{u_1,u_2\}$ y $B_F=\{v_1,v_2,v_3\}$ es $$A=\begin{bmatrix}{2}&{-1}&{1}\\{3}&{4}&{1}\end{bmatrix}.$$ Hallar la matriz de $f$ en las nuevas bases $$B’_E=\{u_1-u_2,u_1+u_2\},\quad B’_F=\{v_1,v_1+v_2,v_1+v_2+v_3\}.$$ La … Sigue leyendo

Publicado en Álgebra | Etiquetado , , , | Comentarios desactivados en Formas bilineales: cambio de base

Formas bilineales simétricas y antisimétricas

Proporcionamos ejercicios de formas bilineales simétricas y antisimétricas. Enunciado Se consideran las formas bilineales en un espacio vectorial real de dimención 2, cuyas expresiones en coordenadas en una determinada base son: $(a)\;\; f(x,y)=2x_1y_1-5x_2y_1-5x_1y_2+4x_2y_2.$ $(b)\;\; g(x,y)=-3x_2y_1+3x_1y_2.$ $(c)\;\; h(x,y)=x_1y_1+7x_2y_1-2x_1y_2+6x_2y_2.$ Estudiar en cada … Sigue leyendo

Publicado en Álgebra | Etiquetado , , , | Comentarios desactivados en Formas bilineales simétricas y antisimétricas

Espacio vectorial de las formas bilineales

Demostramos que las formas bilineales forman un espacio vectorial con las operaciones habituales. Enunciado Sean $E$ y $F$ dos espacios vectoriales sobre el cuerpo $\mathbb{K},$ y sea: $$\mathcal{B}(E,F)=\{f:E\times F\to\mathbb{K}: f\text{ es forma bilineal}\}.$$ Demostrar que $\mathcal{B}(E,F)$ es espacio vectorial sobre … Sigue leyendo

Publicado en Álgebra | Etiquetado , , , | Comentarios desactivados en Espacio vectorial de las formas bilineales