Menú
-
Entradas recientes
- Límites en dos variables
- Conjunto cerrado como intersección contable de abiertos
- Norma en el espacio de las funciones de clase 1
- Límite por cambio de variable
- Distribución binomial
- Convergencia de la serie $\sum_{n=1}^{\infty}\frac{\sin nz}{n}$
- Módulo del seno complejo y del coseno complejo
- Partes del producto y producto de las partes
- Sucesos dependientes e independientes
- Probabilidad condicionada
- Función zeta de Riemann
- Acotación de una suma de logaritmos de números primos
- Teorema de representación de Euler
- Infinitud de los números primos. Demostración analítica
- Infinitud de los números primos. Demostración elemental
- Problema de las coincidencias de Montmort
- $\displaystyle\lim_{n \to{+}\infty}{\frac{1}{n}\sqrt[n]{(n+1)(n+2)\cdots(n+n)}}.$
- Edo $y^{\prime\prime}=x(y^\prime)^3$
- Isomorfismo entre dos anillos
- Plano osculador y curva plana
- Factorización canónica de una aplicación
- Teorema fundamental del Álgebra
- Parte principal de la serie de Laurent de $1/\sin^2z$ en $\pi < |z| < 2\pi$
- Plano de fases de $x^\prime=x,y^\prime=y^2$
- Ceros complejos de las funciones seno y coseno
- Conmutatividad de la suma en los anillos
- Polinomios de Chebyshev y número algebraico
- Dos números algebraicos
- Serie de Taylor por división en potencias crecientes
- Relación de Fibonacci $f_{2n+1}=f_n^2+f_{n+1}^2$
-
Las dudas o comentarios acerca de los contenidos de ésta web se pueden plantear en rinconmatematico.
Archivo de la etiqueta: valores
Valores propios y determinante de una matriz circulante
RESUMEN. Calculamos los valores propios, vectores propios y el determinante de una matriz circulante genérica. Enunciado Recordamos que una matriz circulante es una matriz de la forma $$A=\begin{bmatrix} a_0 & a_1 & \dots & a_{n-2} &a_{n-1} \\ a_{n-1} & a_0 … Sigue leyendo
Publicado en Álgebra
Etiquetado circulante, determinante, matriz, propios, valores
Comentarios desactivados en Valores propios y determinante de una matriz circulante
Valores propios del endomorfismo inverso
Demostramos que los valores propios del endomorfismo inverso son los inversos de los valores propios. Enunciado Sea $\lambda$ un valor propio de un endomorfismo $f:E\to E$ invertible. Demostrar que $\lambda\neq 0$. Demostrar que $1/\lambda$ es valor propio de $f^{-1}$. Aplicación: … Sigue leyendo
Publicado en Álgebra
Etiquetado endomorfismo, inverso, propios, valores
Comentarios desactivados en Valores propios del endomorfismo inverso
Suma y producto de valores propios
Calculamos la suma y el producto de los valores propios de una matriz diagonalizable. Enunciado Se considera la matriz real$$A=\begin{bmatrix}{1}&{5}&{6}\\{5}&{0}&{3}\\{6}&{3}&{4}\end{bmatrix}.$$Hallar la suma y el producto de sus valores propios sabiendo que es diagonalizable. Solución Por hipótesis, existe $P\in\mathbb{R}^{3\times 3}$ invertible … Sigue leyendo
Valores propios de una matriz nilpotente
En este problema se analizan los valores propios de una matriz nilpotente. Enunciado Sea $A$ matriz cuadrada nilpotente, es decir existe un entero positivo $m$ tal que $A^m=0$. Se pide: $(a)$ Demostrar que $\lambda=0$ es valor propio de $A$. $(b)$ … Sigue leyendo
Publicado en Álgebra
Etiquetado matriz, nilpotente, propios, valores
Comentarios desactivados en Valores propios de una matriz nilpotente
Cálculo de valores y vectores propios. Polinomio característico
Proporcionamos ejercicios sobre el cálculo de valores y vectores propios y el polinomio característico. Enunciado Sea $E$ un espacio vectorial real y $f:E\to E$ el endomorfismo cuya matriz en una determinada base $B=\{u_1,u_2\}$ es $$A=\begin{bmatrix}{2}&{2}\\{1}&{3}\end{bmatrix}.$$ $(a)$ Calcular los valores propios … Sigue leyendo